×

zbMATH — the first resource for mathematics

Optimal multi-period mean-variance policy under no-shorting constraint. (English) Zbl 1304.91185
Summary: We consider in this paper the mean-variance formulation in multi-period portfolio selection under no-shorting constraint. Recognizing the structure of a piecewise quadratic value function, we prove that the optimal portfolio policy is piecewise linear with respect to the current wealth level, and derive the semi-analytical expression of the piecewise quadratic value function. One prominent feature of our findings is the identification of a deterministic time-varying threshold for the wealth process and its implications for market settings. We also generalize our results in the mean-variance formulation to utility maximization with no-shorting constraint.

MSC:
91G10 Portfolio theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bertsekas, D. P., Dynamic Programming and Optimal Control, vol. 1, (2001), Athena Scientific · Zbl 1083.90044
[2] Bielecki, T.; Jin, H.; Pliska, S.; Zhou, X. Y., Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Math. Finance, 15, 213-244, (2005) · Zbl 1153.91466
[3] Chiu, M. C.; Wong, H. Y., Mean-variance asset-liability management: cointegrated assets and insurance liability, Euro. J. Oper. Res., 223, 785-793, (2012) · Zbl 1292.91158
[4] Cui, X. Y.; Li, D.; Wang, S. Y.; Zhu, S. S., Better than dynamic mean-variance: time inconsistency and free cash flow stream, Math. Finance, 22, 346-378, (2012) · Zbl 1278.91131
[5] Cvitanić, J.; Karatzas, I., Convex duality in constrained portfolio optimization, Ann. Appl. Probab., 2, 767-818, (1992) · Zbl 0770.90002
[6] Czichowsky, C., Schweizer, M., 2010. Convex Duality in Mean-Variance Hedging Under Convex Trading Constraints, NCCR FINRISK working paper No. 667, ETH Zurich.
[7] Czichowsky, C., Schweizer, M., 2011. Cone-Constrained Continuous-Time Markowitz Problems, NCCR FINRISK working paper No. 683, ETH Zurich.
[8] Fu, C.; Lari-Lavassani, A.; Li, X., Dynamic meancvariance portfolio selection with borrowing constraint, Euro. J. Oper. Res., 200, 312C319, (2010)
[9] Gao, J.J., Li, D., Cui, X.Y., Wang, S.Y., 2012. Market timing strategy in dynamic portfolio selection: a mean-variance formulation. http://papers.ssrn.com/sol3/papers.cfm?abstractid=2015580.
[10] Gulpinar, N.; Rustem, B., Worst-case robust decisions for multi-period mean-variance portfolio optimization, Euro. J. Oper. Res., 183, 981-1000, (2007) · Zbl 1138.91446
[11] Labbé, C.; Heunis, A. J., Convex duality in constrained mean-variance portfolio optimization, Adv. Appl. Probab., 39, 77-104, (2007) · Zbl 1110.93051
[12] Li, D.; Ng, W. L., Optimal dynamic portfolio selection: multiperiod mean-variance formulation, Math. Finance, 10, 387-406, (2000) · Zbl 0997.91027
[13] Li, X.; Zhou, X. Y.; Lim, A. E.B., Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Control Optim., 40, 1540-1555, (2002) · Zbl 1027.91040
[14] Li, X.; Qin, Z.; Kar, S., Mean-variance-skewness model for portfolio selection with fuzzy returns, Euro. J. Oper. Res., 202, 239-247, (2010) · Zbl 1175.90438
[15] Markowitz, H. M., Portfolio selection, J. Finance, 7, 77-91, (1952)
[16] Markowitz, H. M., The optimization of a quadratic function subject to linear constraints, Nav. Res. Log., 3, 111-133, (1956)
[17] Markowitz, H.M., 2000. Personal Communication with Duan Li. The Chinese University of Hong Kong.
[18] Merton, R. C., An analytical derivation of the efficient portfolio frontier, J. Finance Quant. Anal., 7, 1851-1872, (1972)
[19] Pliska, S. R., Introduction to mathematical finance, (1997), Basil Blackwell Malden, MA
[20] Sun, W. G.; Wang, C. F., The mean-variance investment problem in a constrained financial market, J. Math. Econ., 42, 885-895, (2006) · Zbl 1153.91565
[21] Wang, J.; Forsyth, P. A., Continuous time mean variance asset allocation: a time-consistent strategy, Euro. J. Oper. Res., 209, 184-201, (2011) · Zbl 1208.91139
[22] Xu, G. L.; Shreve, S. E., A duality method for optimal consumption and investment under short-selling prohibition: I. general market coefficients, Ann. Appl. Probab., 2, 87-112, (1992) · Zbl 0745.93083
[23] Xu, G. L.; Shreve, S. E., A duality method for optimal consumption and investment under short-selling prohibition: II. constant market coefficients, Ann. Appl. Probab., 2, 314-328, (1992) · Zbl 0773.90017
[24] Zhou, X. Y.; Li, D., Continuous time mean-variance portfolio selection: a stochastic LQ framework, Appl. Math. Optim., 42, 19-33, (2000) · Zbl 0998.91023
[25] Zhu, S. S.; Li, D.; Wang, S. Y., Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation, IEEE Trans. Automat. Contr., 49, 447-457, (2004) · Zbl 1366.91150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.