×

zbMATH — the first resource for mathematics

Path properties of the linear multifractional stable motion. (English) Zbl 1304.28010

MSC:
28A80 Fractals
60G22 Fractional processes, including fractional Brownian motion
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Stoev and M. S. Taqqu, Adv. Appl. Probab. 36(4), 1085 (2004). genRefLink(128, ’rf1’, ’000226288800007’);
[2] R. F. Peltier and J. L. Levy-Vehel, Multifractional Brownian Motion: Definition and Preliminary Results, Technical Report 2645 (Institut National de Recherche en Informatique et an Automatique, INRIA, Le Chesnay, France, 1995) .
[3] A. Benassi, S. Jaffard and D. Roux, Rev. Math. Iberoam. 13(1), 19 (1997). genRefLink(128, ’rf3’, ’A1997XT27700002’);
[4] A. Ayache and J. Lévy-Véhel, Stat. Inf. Stoch. Process. 3, 7 (2000).
[5] A. Ayache, J. Fourier Anal. Appl. 8(6), 581 (2002). genRefLink(128, ’rf5’, ’000178752800005’);
[6] A. Ayache and M. S. Taqqu, Multifractional processes with random exponent, preprint (2003) . · Zbl 1082.60032
[7] M. S. Taqqu, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim and M. S. Taqqu (Birkhäuser, 2003) pp. 5-38. · Zbl 1039.60041
[8] P. Embrechts and M. Maejima , Self-Similar Processes ( Academic Press , 2003 ) . · Zbl 1219.60040
[9] S. Cohen , Fractals: Theory and Applications in Engineering , eds. M. Dekking ( Springer-Verlag , 1999 ) .
[10] S. Stoev and M. S. Taqqu, How rich is the class of multifractional Brownian motions?, Preprint (2004) . · Zbl 1094.60024
[11] G. Samorodnitsky and M. S. Taqqu , Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance ( Chapman and Hall , New York, London , 1994 ) . · Zbl 0925.60027
[12] A. Benassi, S. Cohen and J. Istas, Bernoulli 8, 97 (2002). genRefLink(128, ’rf12’, ’000177040500005’);
[13] A. Benassi, S. Cohen and J. Istas, Bernoulli 10(2), 357 (2004). genRefLink(128, ’rf13’, ’000224916000007’);
[14] J.-M. Bardet and P. Bertrand, Properties and identification of the multiscale fractional Brownian motion with biomedical applications, preprint (2003) .
[15] J. L. Doob , Stochastic Processes ( Wiley , New York , 1953 ) .
[16] D. W. Stroock , Probability Theory: An Analytic View ( Cambridge University Press , New York , 1993 ) . · Zbl 0925.60004
[17] S. Seuret and J. Lévy-Vehel, Appl. Comput. Harm. Anal. 13(3), 263 (2002). genRefLink(128, ’rf17’, ’000179980300004’);
[18] B. Guiheneuf and J. Lévy-Vehel , Two-microlocal analysis and applications in signal processing , Wavelets and Multiscale Methods, International Wavelets Conference ( INRIA , Tangier, Morocco , 1998 ) .
[19] S. Jaffard and Y. Meyer , Memoirs of the American Mathematical Society 587 ( American Mathematical Society , Providence, RI , 1996 ) .
[20] B. Guiheneuf, S. Jaffard and J. Lévy-Vehel, Appl. Comput. Harm. Anal. 5(4), 487 (1998). genRefLink(128, ’rf20’, ’000076372700005’);
[21] I. Karatzas and S. E. Shreve , 2nd edn. , Graduate Texts in Mathematics 113 ( Springer-Verlag , New York , 1991 ) .
[22] A. Ayache, S. Jaffard and M. S. Taqqu, Multifractional processes with most general Hölder exponents, preprint (2003) .
[23] H. L. Royden , Real Analysis , 3rd edn. ( Macmillan , 1998 ) . · Zbl 0197.03501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.