×

zbMATH — the first resource for mathematics

Analytical solution of non-linear enzyme reaction equations arising in mathematical chemistry. (English) Zbl 1303.92154
Summary: The boundary value problem in basic enzyme reactions is formulated and approximate expressions for substrate and substrate-enzyme complex are presented. He’s homotopy perturbation method is used to give approximate and analytical solutions of non-linear reaction equations containing a non-linear term related to enzymatic reaction. The pertinent analytical solutions for the substrate, enzyme- substrate complex and free enzyme are discussed in terms of dimensionless parameters \(\sigma , \rho \) and \(\varepsilon\). The obtained concentration results are compared with the numerical solution acquired using Matlab program. They are found to be in satisfactory agreement.

MSC:
92E20 Classical flows, reactions, etc. in chemistry
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
92C40 Biochemistry, molecular biology
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rubinow S.I.: Introduction to Mathematical Biology. Wiley, New york (1975) · Zbl 0314.92001
[2] Murray J.D.: Mathematical Biology, p. 175. Springer, Berlin (1989) · Zbl 0682.92001
[3] Segel L.A.: Mathematical Models in Molecular and Cellular Biology. Cambridge University press, Cambridge (1980) · Zbl 0448.92001
[4] Roberts D.V.: Enzyme Kinetics. Cambridge University press, Cambridge (1977)
[5] Ghori Q.K., Ahmed M., Siddiqui A.M.: Int. J. Nonlinear Sci. Numer. Simul. 8, 179 (2007)
[6] Ozis T., Yildirim A.: Int. J. Nonlinear Sci. Numer. Simul. 8, 243 (2007) · Zbl 06942269 · doi:10.1515/IJNSNS.2007.8.2.243
[7] Li S.J., Liu Y.X.: Int. J. Nonlinear Sci. Numer. Simul. 7, 177 (2006)
[8] M.M. Mousa, S.F. Ragab, Z. Fur Naturforsch. Sec. A 63, 140–144 (2008)
[9] He J.H.: Comp. Methods Appl. Mech. Eng. 178, 257 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[10] He J.H.: Appl. Math. Comput. 135, 73 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[11] He J.H.: Appl. Math. Comput. 140, 217 (2003) · Zbl 1028.65085 · doi:10.1016/S0096-3003(02)00189-3
[12] He J.H.: Phys. Lett. A 350, 87 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[13] Golbabai A., Keramati B.: Chaos Solitons Fractals 37, 1528 (2008) · Zbl 1142.65465 · doi:10.1016/j.chaos.2006.10.037
[14] Ghasemi M., Kajani T.M., Babolian E.: Appl. Math. Comput. 188, 446 (2007) · Zbl 1114.65367 · doi:10.1016/j.amc.2006.10.015
[15] Biazar J., Ghazvini H.: Chaos Solitons Fractals 39, 770 (2009) · Zbl 1197.65219 · doi:10.1016/j.chaos.2007.01.108
[16] Odibat Z., Momani S.: Phys. Lett. A 365, 351 (2007) · Zbl 1203.65213 · doi:10.1016/j.physleta.2007.01.064
[17] Chowdhury M.S.H, Hashim I.: Phys. Lett. A 368, 305 (2007) · Zbl 1209.65106 · doi:10.1016/j.physleta.2007.04.020
[18] He J.H.: Int. J. Mod. Phys. B 20, 1141 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.