×

Numerical simulation of lateral migration of red blood cells in Poiseuille flows. (English) Zbl 1302.92021

Summary: A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the RBC rheology in two-dimensional Poiseuille flows using an immersed boundary method. The lateral migration properties of the cells in Poiseuille flows have been investigated. The simulation results show that the rate of migration toward the center of the channel depends on the swelling ratio and the deformability of the cells. We have also combined the above methodology with a fictitious domain method to study the motion of RBCs in a two-dimensional micro-channel with a constriction with an application to blood plasma separation.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C35 Physiological flow
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M85 Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
76Z05 Physiological flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fischer, Shape memory of human red blood cells, Biophysical Journal 86 pp 3304– (2004) · doi:10.1016/S0006-3495(04)74378-7
[2] Skalak, Deformation of red blood cells in capillaries, Science 164 pp 717– (1969) · doi:10.1126/science.164.3880.717
[3] Fahraeus, The viscosity of blood in narrow capillary tubes, American Journal of Physiology 96 pp 562– (1931)
[4] Cristini, Computer modeling of red blood cell rheology in the microcirculation: a brief overview, Annals of Biomedical Engineering 33 pp 1724– (2005) · doi:10.1007/s10439-005-8776-y
[5] Pozrikidis, Modeling and Simulation of Capsules and Biological Cells (2003) · doi:10.1201/9780203503959
[6] Pozrikidis, Axisymmetric motion of a file of red blood cells through capillaries, Physics of Fluids 17 (2005) · Zbl 1187.76425 · doi:10.1063/1.1830484
[7] Eggleton, Large deformation of red blood cell ghosts in a simple shear flow, Physics of Fluids 10 pp 1834– (1998) · doi:10.1063/1.869703
[8] Bagchi, Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, Journal of Biomechanical Engineering 127 pp 1070– (2005) · doi:10.1115/1.2112907
[9] Liu, Rheology of red blood cell aggregation by computer simulation, Journal of Computational Physics 220 pp 139– (2006) · Zbl 1102.92010 · doi:10.1016/j.jcp.2006.05.010
[10] Liu, Immersed finite element method and its applications to biological systems, Computer Methods in Applied Mechanics and Engineering 195 pp 1722– (2006) · Zbl 1178.76232 · doi:10.1016/j.cma.2005.05.049
[11] Tsubota, Simulation study on effects of hematocrit on blood flow properties using particle method, Journal of Biomechanical Science Engineering 1 pp 159– (2006) · doi:10.1299/jbse.1.159
[12] Crowl, Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells, International Journal for Numerical Methods in Biomedical Engineering 26 pp 471– (2009) · Zbl 1183.92022 · doi:10.1002/cnm.1274
[13] MacMeccan, Journal of Fluid Mechanics 618 pp 13– (2009) · Zbl 1156.76455 · doi:10.1017/S0022112008004011
[14] Dupin, Modeling the flow of dense suspensions of deformable particles in three dimensions, Physical Review E 75 (2007) · doi:10.1103/PhysRevE.75.066707
[15] Ferrari, Cancer nanotechnology: opportunities and challenges, Nature Reviews Cancer 5 pp 161– (2005) · doi:10.1038/nrc1566
[16] La Van, Small-scale systems for in vivo drug delivery, Nature Biotechnology 21 pp 1184– (2003) · doi:10.1038/nbt876
[17] Glowinski, Handbook of Numerical Analysis IX pp 7– (2003)
[18] Pan, Fluidization of 1204 spheres: simulation and experiments, Journal of Fluid Mechanics 451 pp 169– (2002) · Zbl 1037.76037 · doi:10.1017/S0022112001006474
[19] Hansen, An elastic network model based on the structure of the red blood cell membrane skeleton, Biophysical Journal 70 pp 146– (1996) · doi:10.1016/S0006-3495(96)79556-5
[20] Vera, 3D Nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations, Annals of Biomedical Engineering 33 pp 1387– (2005) · doi:10.1007/s10439-005-4698-y
[21] Dubus, A Gaussian model for the membrane of red blood cells with cytoskeletal defects, Europhysics Letters 75 pp 181– (2006) · doi:10.1209/epl/i2006-10081-1
[22] Dzwinel, A discrete-particle model of blood dynamics in capillary vessels, Journal of Colloid and Interface Science 258 pp 163– (2003) · doi:10.1016/S0021-9797(02)00075-9
[23] Hosseini, A particle-based model for the transport of erythrocytes in capillaries, Chemical Engineering Science 64 pp 4488– (2009) · doi:10.1016/j.ces.2008.11.028
[24] Secomb, Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels, Annals of Biomedical Engineering 35 pp 755– (2007) · doi:10.1007/s10439-007-9275-0
[25] Li, Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophysical Journal 88 pp 3707– (2005) · doi:10.1529/biophysj.104.047332
[26] Pivkin, Accurate coarse-grained modeling of red blood cells, Physics Review Letters 101 pp 118105– (2008) · doi:10.1103/PhysRevLett.101.118105
[27] Wang, Numerical simulation of rheology of red blood cell rouleaux in micro-channels, Physical Review E 79 (2009) · doi:10.1103/PhysRevE.79.041916
[28] Fischer, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science 202 pp 894– (1978) · doi:10.1126/science.715448
[29] Keller, Motion of a tank-treading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics 120 pp 27– (1982) · Zbl 0503.76142 · doi:10.1017/S0022112082002651
[30] Beaucourt, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E 9 (2004)
[31] Li, Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model, Europhysics Letters 81 pp 54002– (2008) · doi:10.1209/0295-5075/81/54002
[32] Blackshear, Effect of flow on cells near walls, Federal Proceedings 30 pp 1600– (1971)
[33] Faivre, Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma, Biorheology 43 pp 147– (2006)
[34] Shelby, A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, PNAS 100 pp 14618– (2003) · doi:10.1073/pnas.2433968100
[35] Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics 25 pp 220– (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[36] Peskin, Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, Journal of Computational Physics 37 pp 113– (1980) · Zbl 0447.92009 · doi:10.1016/0021-9991(80)90007-8
[37] Peskin, The immersed boundary method, Acta Numerica 11 pp 479– (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[38] Pan, Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow, Comptes Rendus Mecanique 333 pp 884– (2005) · Zbl 1173.76431 · doi:10.1016/j.crme.2005.10.006
[39] Chorin, Product formulas and numerical algorithms, Communications on Pure and Applied Mathematics 31 pp 205– (1978) · Zbl 0358.65082 · doi:10.1002/cpa.3160310205
[40] Dean, A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow, Comptes Rendus de l’Acadmie des Sciences Paris, Série 1 325 pp 783– (1997)
[41] Dean, Mathematical and Numerical Aspects of Wave Propagation pp 65– (1998)
[42] Coupier, Noninertial lateral migration of vesicles in bounded Poiseuille flow, Physics of Fluids 20 pp 111702– (2008) · Zbl 1182.76164 · doi:10.1063/1.3023159
[43] Pan, Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, Journal of Computational Physics 181 pp 260– (2002) · Zbl 1178.76235 · doi:10.1006/jcph.2002.7123
[44] Adachi, The behavior of a swarm of particles moving in a viscous fluid, Chemical Engineering Science 33 pp 115– (1978) · doi:10.1016/0009-2509(78)85077-5
[45] Bagchi, Mesoscale simulation of blood flow in small vessels, Biophysical Journal 92 pp 1858– (2007) · doi:10.1529/biophysj.106.095042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.