zbMATH — the first resource for mathematics

Posterior convergence rates for estimating large precision matrices using graphical models. (English) Zbl 1302.62124
Summary: We consider Bayesian estimation of a \(p\times p\) precision matrix, when \(p\) can be much larger than the available sample size \(n\). It is well known that consistent estimation in such ultra-high dimensional situations requires regularization such as banding, tapering or thresholding. We consider a banding structure in the model and induce a prior distribution on a banded precision matrix through a Gaussian graphical model, where an edge is present only when two vertices are within a given distance. For a proper choice of the order of graph, we obtain the convergence rate of the posterior distribution and Bayes estimators based on the graphical model in the \(L_{\infty}\)-operator norm uniformly over a class of precision matrices, even if the true precision matrix may not have a banded structure. Along the way to the proof, we also compute the convergence rate of the maximum likelihood estimator (MLE) under the same set of condition, which is of independent interest. The graphical model based MLE and Bayes estimators are automatically positive definite, which is a desirable property not possessed by some other estimators in the literature. We also conduct a simulation study to compare finite sample performance of the Bayes estimators and the MLE based on the graphical model with that obtained by using a Cholesky decomposition of the precision matrix. Finally, we discuss a practical method of choosing the order of the graphical model using the marginal likelihood function.

62H12 Estimation in multivariate analysis
62F12 Asymptotic properties of parametric estimators
62F15 Bayesian inference
HdBCS; glasso
PDF BibTeX Cite
Full Text: DOI Euclid arXiv
[1] Atay-Kayis, A. and Massam, H. (2005). A Monte-Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models., Biometrika 92 317-335. · Zbl 1094.62028
[2] Bickel, P. J. and Levina, E. (2008a). Covariance regularization by thresholding., Ann. Statist. 36 2577-2604. · Zbl 1196.62062
[3] Bickel, P. J. and Levina, E. (2008b). Regularized estimation of large covariance matrices., Ann. Statist. 36 199-227. · Zbl 1132.62040
[4] Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation., J. Amer. Statist. Assoc. 106 672-684. · Zbl 1232.62086
[5] Cai, T., Liu, W. and Luo, X. (2011). A constrained \(\ell_1\)-minimization approach to sparse precision matrix estimation., J. Amer. Statist. Assoc. 106 594-607. · Zbl 1232.62087
[6] Cai, T. T. and Yuan, M. (2012). Adaptive covariance matrix estimation through block thresholding., Ann. Statist. 40 2014-2042. · Zbl 1257.62060
[7] Cai, T. T., Zhang, C. H. and Zhou, H. H. (2010). Optimal rates of convergence for covariance matrix estimation., Ann. Statist. 38 2118-2144. · Zbl 1202.62073
[8] Carvalho, C. M., Massam, H. and West, M. (2007). Simulation of hyper-inverse Wishart distributions in graphical models., Biometrika 94 647-659. · Zbl 1135.62011
[9] Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models., Biometrika 96 497-512. · Zbl 1170.62020
[10] Dawid, A. P. and Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models., Ann. Statist. 21 1272-1317. · Zbl 0815.62038
[11] Dobra, A., Lenkoski, A. and Rodriguez, A. (2011). Bayesian inference for general Gaussian graphical models with application to multivariate lattice data., J. Amer. Statist. Assoc. 106 1418-1433. · Zbl 1234.62018
[12] Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G. and West, M. (2004). Sparse graphical models for exploring gene expression data., J. Multivariate Anal. 90 196-212. · Zbl 1047.62104
[13] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso., Biostatistics 9 432- 441. · Zbl 1143.62076
[14] Ghosal, S. (2000). Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity., J. Multivariate Anal. 74 49-68. · Zbl 1118.62309
[15] Gröne, R., Johnson, C. R., Sá, E. M. and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices., Linear Algebra Appl. 58 109-124. · Zbl 0547.15011
[16] Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood., Biometrika 93 85-98. · Zbl 1152.62346
[17] Karoui, N. E. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices., Ann. Statist. 36 2717-2756. · Zbl 1196.62064
[18] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation., Ann. Statist. 37 4254. · Zbl 1191.62101
[19] Lauritzen, S. L. (1996)., Graphical Models . Clarendon Press, Oxford. · Zbl 0907.62001
[20] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices., J. Multivariate Anal. 88 365-411. · Zbl 1032.62050
[21] Lenkoski, A. and Dobra, A. (2011). Computational aspects related to inference in Gaussian graphical models with the G-Wishart prior., J. Comput. Graphical Statist. 20 140-157. · Zbl 1232.62046
[22] Letac, G. and Massam, H. (2007). Wishart distributions for decomposable graphs., Ann. Statist. 35 1278-1323. · Zbl 1194.62078
[23] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso., Ann. Statist. 34 1436-1462. · Zbl 1113.62082
[24] Muirhead, R. (2005)., Aspects of Multivariate Statistical Theory . Wiley, New York. · Zbl 0556.62028
[25] Pati, D., Bhattacharya, A., Pillai, N. S. and Dunson, D. (2014). Posterior contraction in sparse Bayesian factor models for massive covariance matrices., Ann. Statist. 42 1102-1130. · Zbl 1305.62124
[26] Rajaratnam, B., Massam, H. and Carvalho, C. M. (2008). Flexible covariance estimation in graphical Gaussian models., Ann. Statist. 36 2818-2849. · Zbl 1168.62054
[27] Rothman, A. J., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices., J. Amer. Statist. Assoc. 104 177-186. · Zbl 1388.62170
[28] Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008). Sparse permutation invariant covariance estimation., Electron. J. Statist. 2 494-515. · Zbl 1320.62135
[29] Roverato, A. (2000). Cholesky decomposition of a hyper inverse Wishart matrix., Biometrika 87 99-112. · Zbl 0974.62047
[30] Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior., Ann. Statist. 22 1195-1211. · Zbl 0819.62013
[31] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model., Biometrika 94 19-35. · Zbl 1142.62408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.