zbMATH — the first resource for mathematics

Image inpainting with energies of linear growth. A collection of proposals. (English. Russian original) Zbl 1302.49004
J. Math. Sci., New York 196, No. 4, 490-497 (2014); translation from Probl. Mat. Anal. 74, 45-50 (2013).
Summary: We discuss different variants of the so-called total variation image inpainting method collecting existence and regularity results related to the proposed techniques. As a new feature we give an interpretation of a boundary value problem in the class of \(L^\infty\)-data. We use an averaging process and pass to the limit.

49J20 Existence theories for optimal control problems involving partial differential equations
49N60 Regularity of solutions in optimal control
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI
[1] P. Arias, V. Caselles, G. Facciolo, V. Lazcano, and R. Sadek, ”Nonlocal variational models for inpainting and interpolation”, Math. Models Methods Appl. Sci. 22, Suppl. 2 (2012). · Zbl 1267.68278
[2] P. Arias, V. Casseles, and G. Sapiro, A Variational Framework for Non-Local Image Inpainting, IMA Preprint Series No. 2265 (2009).
[3] P. Arias, G. Facciolo, V. Casseles, and G. Sapiro, ”A variational framework for exemplarbased image inpainting,” Int. J. Comput. Vis. 93, No. 3, 319–347 (2011). · Zbl 1235.94015 · doi:10.1007/s11263-010-0418-7
[4] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York (2002). · Zbl 1109.35002
[5] M. Bertalmio, G. Sapiro, V, Caselles, and C. Ballester, ”Image inpainting,” In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424, ACM Press/Addison-Wesley Publishing Co. (2000).
[6] M. Burger, L. He, and C.-B. Sch”onlieb, ”Cahn-Hilliard inpainting and a generalization for grayvalue images”, SIAM J. Imaging Sci. 2, No. 4, 1129–1167 (2009). · Zbl 1180.49007
[7] T. F. Chan, S. H. Kang, and J. Shen, ”Euler’s elastica and curvature based inpaintings”, SIAM J. Appl. Math. 63, No. 2, 564–592 (2002). · Zbl 1028.68185
[8] T.F. Chan and J. Shen, ”Nontexture inpainting by curvature-driven diffusions”, J. Visual Commun. Image Represen. 12, No. 4, 436–449 (2001). · doi:10.1006/jvci.2001.0487
[9] T. F. Chan and J. Shen, ”Mathematical models for local nontexture inpaintings”, SIAM J. Appl. Math. 62, No. 3, 1019–1043 (2001/02). · Zbl 1050.68157
[10] S. Esedoglu and J. Shen, ”Digital inpainting based on the Mumford-Shah-Euler image model”, European J. Appl. Math. 13, No. 4, 353–370 (2002). · Zbl 1017.94505 · doi:10.1017/S0956792502004904
[11] K. Papafitsoros, B. Sengul, and C.-B. Sch”onlieb, Combined First and Second Order Total Variation Impainting Using Split Bregman, IPOL Preprint (2012).
[12] J. Shen, Inpainting and the fundamental problem of image processing, SIAM News 36, No. 5, 1–4 (2003).
[13] R. A. Adams, Sobolev Spaces, Academic Press, New York etc. (1975).
[14] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984). · Zbl 0545.49018
[15] F. Demengel and R. Temam, ”Convex functions of a measure and applications”, Ind. Univ. Math. J. 33, 673–709 (1984). · Zbl 0581.46036 · doi:10.1512/iumj.1984.33.33036
[16] M. Bildhauer and M. Fuchs, On Some Perturbations of the Total Variation Image Inpainting Method. Part 1: Regularity Theory, Preprint No. 328, Saarland University. · Zbl 1321.49060
[17] M. Bildhauer and M. Fuchs, ”A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim. 66, No. 3, 331–361 (2012). · Zbl 1260.49074 · doi:10.1007/s00245-012-9174-0
[18] M. Bildhauer and M. Fuchs, On Some Perturbations of the Total Variation Image Inpainting Method. Part 2: Relaxation and Dual Variational Formulation, Preprint No. 332, Saarland University. · Zbl 1321.49054
[19] D. Apushkinskaya, M. Bildhauer, and M. Fuchs, ”On local generalized minimizers and local stress tensors for variational problems with linear growth,” J. Math. Sci. 165, No. 1, 39–54 (2010). · Zbl 1301.49096 · doi:10.1007/s10958-010-9779-2
[20] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000). · Zbl 0957.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.