×

Feynman rules for the rational part of the standard model one-loop amplitudes in the ’tHooft-Veltman \(\gamma_{5}\) scheme. (English) Zbl 1301.81360

Summary: We study Feynman rules for the rational part \(R\) of the Standard Model amplitudes at one-loop level in the ’t Hooft-Veltman \(\gamma_{5}\) scheme. Comparing our results for quantum chromodynamics and electroweak 1-loop amplitudes with that obtained based on the Kreimer-Korner-Schilcher (KKS) \(\gamma_{5}\) scheme, we find the latter result can be recovered when our \(\gamma_{5}\) scheme becomes identical (by setting \(g5s = 1\) in our expressions) with the KKS scheme. As an independent check, we also calculate Feynman rules obtained in the KKS scheme, finding our results in complete agreement with formulae presented in the literature. Our results, which are studied in two different \(\gamma_{5}\) schemes, may be useful for clarifying the \(\gamma_{5}\) problem in dimensional regularization. They are helpful to eliminate or find ambiguities arising from different dimensional regularization schemes.

MSC:

81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES].
[2] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP03 (2010) 021 [arXiv:1001.4006] [SPIRES]. · Zbl 1271.81172
[3] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist:\( pp \to t\bar{t}b\bar{b} \), JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[4] R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev.D 80 (2009) 094002 [arXiv:0906.] [SPIRES].
[5] C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].
[6] C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ* + 3-jet distributions at the Tevatron, Phys. Rev.D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].
[7] C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [SPIRES].
[8] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP12 (2010) 053 [arXiv:1007.5313] [SPIRES].
[9] G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + Z and W − Z production via vector-boson fusion, Phys. Rev.D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].
[10] B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev.D 73 (2006) 113006 [hep-ph/0604200] [SPIRES].
[11] B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+W−production via vector-boson fusion, JHEP07 (2006) 015 [hep-ph/0603177] [SPIRES].
[12] F. Campanario, Towards pp → VVjj at NLO QCD: bosonic contributions to triple vector boson production plus jet, arXiv:1105.0920 [SPIRES]. · Zbl 1303.81208
[13] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \(pp \to t\bar{t} + 2\) jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES].
[14] G. Bevilacqua et al., NLO QCD calculations with HELAC-NLO, Nucl. Phys. Proc. Suppl.205-206 (2010) 211 [arXiv:1007.4918] [SPIRES].
[15] M. Worek, Recent developments in NLO QCD calculations: the particular case of \(pp \to t\bar{t}\) jj, arXiv:1012.4987 [SPIRES].
[16] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to \(WWb\bar{b}\) production at hadron colliders, Phys. Rev. Lett.106 (2011) 052001 [arXiv:1012.3975] [SPIRES].
[17] G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP02 (2011) 083 [arXiv:1012.4230] [SPIRES].
[18] T. Binoth et al., Next-to-leading order QCD corrections to \(pp \to b\bar{b}b\bar{b} + X\) at the LHC: the quark induced case, Phys. Lett.B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].
[19] N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, arXiv:1105.3624 [SPIRES].
[20] F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for W γ γ + jet production at hadron colliders, arXiv:1106.4009 [SPIRES].
[21] SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
[22] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [SPIRES].
[23] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644
[24] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES].
[25] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [SPIRES].
[26] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202
[27] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[28] R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
[29] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integr and level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[30] G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP07 (2007) 085 [arXiv:0704.1271] [SPIRES].
[31] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[32] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES].
[33] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES].
[34] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [SPIRES].
[35] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [SPIRES].
[36] A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys.B 658 (2003) 175 [hep-ph/0212259] [SPIRES]. · Zbl 1027.81517
[37] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [SPIRES]. · Zbl 1192.81158
[38] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[39] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP01 (2010) 040 [arXiv:0910.3130]. [Erratum-ibid.1010:097,2010]. · Zbl 1269.81214
[40] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the Rξgauge and in the unitary gauge, JHEP01 (2011) 029 [arXiv:1009.4302] [SPIRES]. · Zbl 1214.81328
[41] M.V. Garzelli and I. Malamos, R2SM: a package for the analytic computation of the R2 Rational terms in the standard model of the Electroweak interactions, Eur. Phys. J.C 71 (2011) 1605 [arXiv:1010.1248] [SPIRES].
[42] W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett.B 84 (1979) 193 [SPIRES].
[43] Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [SPIRES].
[44] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES].
[45] S. Catani, M.H. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross sections, Phys. Rev.D 55 (1997) 6819 [hep-ph/9610553] [SPIRES].
[46] Z. Bern, A. DeFreitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].
[47] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [SPIRES].
[48] D. Kreimer, The role of γ5in dimensional regularization, hep-ph/9401354 [SPIRES].
[49] J.G. Korner, D. Kreimer and K. Schilcher, A practicable γ5scheme in dimensional regularization, Z. Phys.C 54 (1992) 503 [SPIRES].
[50] D. Kreimer, The γ5problem and anomalies: a Clifford algebra approach, Phys. Lett.B 237 (1990) 59 [SPIRES].
[51] C.G. Bollini and J.J. Giambiagi, Lowest order divergent graphs in ν-dimensional space, Phys. Lett.B 40 (1972) 566 [SPIRES].
[52] G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Nuovo Cim. Lett.4 (1972) 329 [SPIRES].
[53] J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim.4 (1972) 289 [SPIRES].
[54] P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys.52 (1977) 11 [SPIRES].
[55] P. Breitenlohner and D. Maison, Dimensionally renormalized Green’s functions for theories with massless particles. 1, Commun. Math. Phys.52 (1977) 39 [SPIRES].
[56] P. Breitenlohner and D. Maison, Dimensionally renormalized Green’s functions for theories with massless particles. 2, Commun. Math. Phys.52 (1977) 55 [SPIRES].
[57] G. Bonneau, Consistency in dimensional regularization with γ5, Phys. Lett.B 96 (1980) 147 [SPIRES].
[58] G. Bonneau, Preserving canonical ward identities in dimensional regularization with a nonanticommuting γ5, Nucl. Phys.B 177 (1981) 523 [SPIRES].
[59] C.P. Martin and D. Sánchez-Ruiz, Action principles, restoration of BRS symmetry and the renormalization group equation for chiral non-Abelian gauge theories in dimensional renormalization with a non-anticommuting γ5, Nucl. Phys.B 572 (2000) 387 [hep-th/9905076] [SPIRES]. · Zbl 0947.81046
[60] C. Schubert, The Yukawa model as an example for dimensional renormalization with γ − 5, Nucl. Phys.B 323 (1989) 478 [SPIRES].
[61] M. Pernici, M. Raciti and F. Riva, Dimensional renormalization of Yukawa theories via Wilsonian methods, Nucl. Phys.B 577 (2000) 293 [hep-th/9912248] [SPIRES].
[62] M. Pernici, Semi-naive dimensional renormalization, Nucl. Phys.B 582 (2000) 733 [hep-th/9912278] [SPIRES]. · Zbl 0984.81087
[63] M. Pernici and M. Raciti, Axial current in QED and semi-naive dimensional renormalization, Phys. Lett.B 513 (2001) 421 [hep-th/0003062] [SPIRES]. · Zbl 0969.81654
[64] R. Ferrari, A. Le Yaouanc, L. Oliver and J.C. Raynal, Gauge invariance and dimensional regularization with γ5in flavor changing neutral processes, Phys. Rev.D 52 (1995) 3036 [SPIRES].
[65] F. Jegerlehner, Facts of life with γ5, Eur. Phys. J.C 18 (2001) 673 [hep-th/0005255] [SPIRES]. · Zbl 1099.81540
[66] J. Kublbeck, M. Böhm and A. Denner, Feyn arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun.60 (1990) 165 [SPIRES].
[67] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [SPIRES]. · Zbl 0994.81082
[68] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys.41 (1993) 307 [arXiv:0709.1075] [SPIRES].
[69] J.G. Korner, N. Nasrallah and K. Schilcher, Evaluation of the flavor changing vertex b → sH using the Breitenlohner-Maison-’t Hooft-Veltman γ5scheme, Phys. Rev.D 41 (1990) 888 [SPIRES].
[70] H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Dijet invariant mass distribution in top quark hadronic decay with QCD corrections, arXiv:1106.5483 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.