zbMATH — the first resource for mathematics

QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations. (English) Zbl 1301.81285
Summary: We perform an analytic calculation of the one-loop amplitude for the \(W\)-boson mediated process \(0 \to d\bar{u}Q\bar{Q}\bar{\ell }\ell\) retaining the mass for the quark \(Q\). The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron + hadron \(\to W\left( { \to e{\nu} } \right)b\bar{b}\) with massive \(b\)-quarks is included in the program MCFM. A comparison is performed with previous published work.

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Full Text: DOI arXiv
[1] Ellis, RK; Veseli, S., Strong radiative corrections to \( Wb\bar{b} \) production in \( p\bar{p} \) collisions, Phys. Rev., D 60, 011501, (1999)
[2] Febres Cordero, F.; Reina, L.; Wackeroth, D., NLO QCD corrections to W boson production with a massive b-quark jet pair at the tevatron \( p\bar{p} \) collider, Phys. Rev., D 74, 034007, (2006)
[3] Febres Cordero, F.; Reina, L.; Wackeroth, D., W- and Z-boson production with a massive bottom-quark pair at the large hadron collider, Phys. Rev., D 80, 034015, (2009)
[4] Cordero, FF; Reina, L.; Wackeroth, D., Associated production of a W or Z boson with bottom quarks at the tevatron and the LHC, PoS, RADCOR2009, 055, (2010)
[5] Campbell, JM; etal., Associated production of a W boson and one b jet, Phys. Rev., D 79, 034023, (2009)
[6] CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with up to 6.7 fb\^{}{−1}of data, arXiv:1007.4587 [SPIRES].
[7] Butterworth, JM; Davison, AR; Rubin, M.; Salam, GP, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett., 100, 242001, (2008)
[8] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[9] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[10] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[11] Britto, R.; Buchbinder, E.; Cachazo, F.; Feng, B., One-loop amplitudes of gluons in SQCD, Phys. Rev., D 72, 065012, (2005)
[12] Britto, R.; Feng, B.; Mastrolia, P., The cut-constructible part of QCD amplitudes, Phys. Rev., D 73, 105004, (2006)
[13] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[14] Kleiss, R.; Stirling, WJ, Spinor techniques for calculating \( p\bar{p} → {{{{W^± }}} \left/ {{{Z_0} + Jets}} \right.} \), Nucl. Phys., B 262, 235, (1985)
[15] S. Badger, Unitarity methods for one-loop amplitudes, PoS(RADCOR2009)020 [SPIRES].
[16] Badger, S.; Sattler, R.; Yundin, V., Analytic computations of massive one-loop amplitudes, Nucl. Phys. Proc. Suppl., 205-206, 61, (2010)
[17] Rodrigo, G., Multigluonic scattering amplitudes of heavy quarks, JHEP, 09, 079, (2005)
[18] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[19] Ellis, RK; Zanderighi, G., Scalar one-loop integrals for QCD, JHEP, 02, 002, (2008)
[20] Cachazo, F.; Svrček, P.; Witten, E., MHV vertices and tree amplitudes in gauge theory, JHEP, 09, 006, (2004)
[21] Bern, Z.; Freitas, A.; Dixon, LJ; Wong, HL, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev., D 66, 085002, (2002)
[22] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[23] Catani, S.; Dittmaier, S.; Trócsányi, Z., One-loop singular behaviour of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett., B 500, 149, (2001)
[24] Bern, Z.; Dixon, LJ; Kosower, DA, Dimensionally regulated pentagon integrals, Nucl. Phys., B 412, 751, (1994)
[25] Badger, S.; Campbell, JM; Ellis, RK; Williams, C., Analytic results for the one-loop NMHV H qqgg amplitude, JHEP, 12, 035, (2009)
[26] Passarino, G.; Veltman, MJG, One loop corrections for \(e\)\^{}{+}\(e\)\^{}{−} annihilation into \(μ\)\^{}{+}\(μ\)\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[27] Dixon, LJ; Sofianatos, Y., Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP, 08, 058, (2009)
[28] Kunszt, Z.; Signer, A.; Trócsányi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys., B 411, 397, (1994)
[29] Badger, SD, Generalised unitarity at one-loop with massive fermions, Nucl. Phys. Proc. Suppl., 183, 220, (2008)
[30] Collins, JC; Wilczek, F.; Zee, A., Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev., D 18, 242, (1978)
[31] J.M. Campbell and R.K. Ellis, MCFM home page, http://mcfm.fnal.gov.
[32] Campbell, JM; Ellis, RK, An update on vector boson pair production at hadron colliders, Phys. Rev., D 60, 113006, (1999)
[33] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[34] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[35] Catani, S.; Dittmaier, S.; Seymour, MH; Trócsányi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys., B 627, 189, (2002)
[36] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K.; Zanderighi, G., One-loop amplitudes for \(W\)\^{}{+}3 jet production in hadron collisions, JHEP, 01, 012, (2009)
[37] Nagy, Z.; Trócsányi, Z., Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev., D 59, 014020, (1999)
[38] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[39] Campbell, JM; Ellis, RK; Rainwater, DL, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev., D 68, 094021, (2003)
[40] Morgan, AG, Second order fermions in gauge theories, Phys. Lett., B 351, 249, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.