×

QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations. (English) Zbl 1301.81285

Summary: We perform an analytic calculation of the one-loop amplitude for the \(W\)-boson mediated process \(0 \to d\bar{u}Q\bar{Q}\bar{\ell }\ell\) retaining the mass for the quark \(Q\). The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron + hadron \(\to W\left( { \to e{\nu} } \right)b\bar{b}\) with massive \(b\)-quarks is included in the program MCFM. A comparison is performed with previous published work.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)

Software:

FORM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R.K. Ellis and S. Veseli, Strong radiative corrections to \(Wb\bar{b}\) production in \(p\bar{p}\) collisions, Phys. Rev.D 60 (1999) 011501 [hep-ph/9810489] [SPIRES].
[2] F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to W boson production with a massive b-quark jet pair at the Tevatron \(p\bar{p}\) collider, Phys. Rev.D 74 (2006) 034007 [hep-ph/0606102] [SPIRES].
[3] F. Febres Cordero, L. Reina and D. Wackeroth, W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider, Phys. Rev.D 80 (2009) 034015 [arXiv:0906.1923] [SPIRES].
[4] F.F. Cordero, L. Reina and D. Wackeroth, Associated production of a W or Z boson with bottom quarks at the Tevatron and the LHC, PoSRADCOR2009 (2010) 055 [arXiv:1001.3362] [SPIRES].
[5] J.M. Campbell et al., Associated production of a W boson and one b jet, Phys. Rev.D 79 (2009) 034023 [arXiv:0809.3003] [SPIRES].
[6] CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs-boson production with up to 6.7 fb−1of data, arXiv:1007.4587 [SPIRES].
[7] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [SPIRES].
[8] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644
[9] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES].
[10] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202
[11] R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev.D 72 (2005) 065012 [hep-ph/0503132] [SPIRES].
[12] R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev.D 73 (2006) 105004 [hep-ph/0602178] [SPIRES].
[13] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].
[14] R. Kleiss and W.J. Stirling, Spinor techniques for calculating \(p\bar{p} \to{{{{W^\pm }}} \left/ {{{Z_0} + Jets}} \right.} \), Nucl. Phys.B 262 (1985) 235 [SPIRES].
[15] S. Badger, Unitarity methods for one-loop amplitudes, PoS(RADCOR2009)020 [SPIRES].
[16] S. Badger, R. Sattler and V. Yundin, Analytic computations of massive one-loop amplitudes, Nucl. Phys. Proc. Suppl.205-206 (2010) 61 [arXiv:1006.5011] [SPIRES].
[17] G. Rodrigo, Multigluonic scattering amplitudes of heavy quarks, JHEP09 (2005) 079 [hep-ph/0508138] [SPIRES].
[18] Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [SPIRES].
[19] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [SPIRES].
[20] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP09 (2004) 006 [hep-th/0403047] [SPIRES].
[21] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].
[22] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[23] S. Catani, S. Dittmaier and Z. Trócsányi, One-loop singular behaviour of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett.B 500 (2001) 149 [hep-ph/0011222] [SPIRES]. · Zbl 0972.81667
[24] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [SPIRES]. · Zbl 1007.81512
[25] S. Badger, J.M. Campbell, R.K. Ellis and C. Williams, Analytic results for the one-loop NMHV H qqgg amplitude, JHEP12 (2009) 035 [arXiv:0910.4481] [SPIRES].
[26] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [SPIRES].
[27] L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP08 (2009) 058 [arXiv:0906.0008] [SPIRES].
[28] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES].
[29] S.D. Badger, Generalised unitarity at one-loop with massive fermions, Nucl. Phys. Proc. Suppl.183 (2008) 220 [arXiv:0807.1245] [SPIRES].
[30] J.C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev.D 18 (1978) 242 [SPIRES].
[31] J.M. Campbell and R.K. Ellis, MCFM home page, http://mcfm.fnal.gov.
[32] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev.D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].
[33] R.K. Ellis, D.A. Ross and A.E. Terrano, The Perturbative Calculation of Jet Structure in e+e−Annihilation, Nucl. Phys.B 178 (1981) 421 [SPIRES].
[34] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [SPIRES].
[35] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140
[36] R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W+3 jet production in hadron collisions, JHEP01 (2009) 012 [arXiv:0810.2762] [SPIRES].
[37] Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev.D 59 (1999) 014020 [Erratum ibid.D 62 (2000) 099902] [hep-ph/9806317] [SPIRES].
[38] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].
[39] J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev.D 68 (2003) 094021 [hep-ph/0308195] [SPIRES].
[40] A.G. Morgan, Second order fermions in gauge theories, Phys. Lett.B 351 (1995) 249 [hep-ph/9502230] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.