zbMATH — the first resource for mathematics

On the factorization of overlapping singularities at NNLO. (English) Zbl 1301.81284
Summary: Real and virtual corrections in NNLO QCD require multi-dimensional integrals with overlapping singularities. We first review ideas and methods which have been proposed for performing such computations. We then present a new method for the factorization of overlapping singularities based on non-linear integral transformations. We apply this method for the evaluation of all integral topologies which appear in double real radiation corrections in cross-section calculations for the production of a heavy system at hadron colliders. Finally, we demonstrate with typical examples that two-loop virtual corrections are amenable to the same method.

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
PDF BibTeX Cite
Full Text: DOI arXiv
[1] C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[2] Hamberg, R.; Neerven, WL; Matsuura, T., A complete calculation of the order \(α\)_{\(s\)}\^{}{2} correction to the Drell-Yan K factor, Nucl. Phys., B 359, 343, (1991)
[3] Harlander, RV; Kilgore, WB, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett., 88, 201801, (2002)
[4] Anastasiou, C.; Melnikov, K., Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys., B 646, 220, (2002)
[5] Ravindran, V.; Smith, J.; Neerven, WL, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys., B 665, 325, (2003)
[6] Anastasiou, C.; Dixon, LJ; Melnikov, K.; Petriello, F., High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev., D 69, 094008, (2004)
[7] Anastasiou, C.; Melnikov, K.; Petriello, F., Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys., B 724, 197, (2005)
[8] Melnikov, K.; Petriello, F., The W boson production cross section at the LHC through \(O\)(\(α\)_{\(s\)}\^{}{2}), Phys. Rev. Lett., 96, 231803, (2006)
[9] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Jet rates in electron-positron annihilation at \(O\)(\(α\)_{\(s\)}\^{}{3}) in QCD, Phys. Rev. Lett., 100, 172001, (2008)
[10] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, JHEP, 12, 094, (2007)
[11] Weinzierl, S., NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett., 101, 162001, (2008)
[12] Catani, S.; Grazzini, M., An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, (2007)
[13] Catani, S.; Cieri, L.; Ferrera, G.; Florian, D.; Grazzini, M., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 103, 082001, (2009)
[14] Gehrmann, T.; Remiddi, E., Differential equations for two-loop four-point functions, Nucl. Phys., B 580, 485, (2000)
[15] Bern, Z.; Dixon, LJ; Kosower, DA, Dimensionally regulated pentagon integrals, Nucl. Phys., B 412, 751, (1994)
[16] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158, (1991)
[17] Smirnov, VA, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett., B 460, 397, (1999)
[18] Tausk, JB, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett., B 469, 225, (1999)
[19] Anastasiou, C.; Daleo, A., Numerical evaluation of loop integrals, JHEP, 10, 031, (2006)
[20] Czakon, M., Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun., 175, 559, (2006)
[21] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys., B 585, 741, (2000)
[22] Hepp, K., Proof of the bogolyubov-parasiuk theorem on renormalization, Commun. Math. Phys., 2, 301, (1966)
[23] Roth, M.; Denner, A., High-energy approximation of one-loop Feynman integrals, Nucl. Phys., B 479, 495, (1996)
[24] Melnikov, K., \(O\)(\(α\)_{\(s\)}\^{}{2}) corrections to semileptonic decay \( b → cl{\bar{ν }_l} \), Phys. Lett., B 666, 336, (2008)
[25] Asatrian, HM; etal., NNLL QCD contribution of the electromagnetic dipole operator to \( Γ \left( {\bar{B} → {X_s}γ } \right) \), Nucl. Phys., B 749, 325, (2006)
[26] Anastasiou, C.; Melnikov, K.; Petriello, F., The electron energy spectrum in muon decay through \(O\)(\(α\)\^{}{2}), JHEP, 09, 014, (2007)
[27] Anastasiou, C.; Melnikov, K.; Petriello, F., A new method for real radiation at NNLO, Phys. Rev., D 69, 076010, (2004)
[28] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B 693, 259, (2010)
[29] F. Petriello, private communication.
[30] Bolzoni, P.; Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP, 01, 059, (2011)
[31] Anastasiou, C.; Banfi, A., Loop lessons from Wilson loops in N = 4 supersymmetric Yang-Mills theory, JHEP, 02, 064, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.