×

Casimir effect for massive scalar field. (English) Zbl 1301.81259

Summary: The energy-momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism, we also relate the vacuum force expression to the imaginary part of the Green function via the fluctuation-dissipation theorem and Kubo’s formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to \(D+1\) spacetime dimensions.

MSC:

81T55 Casimir effect in quantum field theory
81T70 Quantization in field theory; cohomological methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Casimir H., Proc. K. Ned. Akad. Wet. 51 pp 793– (1948)
[2] Casimir H., Sov. Phys. JETP 73 pp 360– (1948)
[3] DOI: 10.1016/0370-1573(86)90020-7 · doi:10.1016/0370-1573(86)90020-7
[4] DOI: 10.1119/1.16749 · doi:10.1119/1.16749
[5] DOI: 10.1093/acprof:oso/9780199238743.001.0001 · doi:10.1093/acprof:oso/9780199238743.001.0001
[6] DOI: 10.1142/9789812810526 · doi:10.1142/9789812810526
[7] DOI: 10.1016/0003-4916(83)90065-9 · doi:10.1016/0003-4916(83)90065-9
[8] DOI: 10.1016/0003-4916(79)90090-3 · doi:10.1016/0003-4916(79)90090-3
[9] Johnson K., Acta Phys. Pol. B 6 pp 865– (1975)
[10] DOI: 10.1016/0003-4916(83)90021-0 · doi:10.1016/0003-4916(83)90021-0
[11] DOI: 10.1070/PU1988v031n11ABEH005641 · doi:10.1070/PU1988v031n11ABEH005641
[12] Milonni P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics (1994)
[13] DOI: 10.1103/PhysRevD.9.3471 · doi:10.1103/PhysRevD.9.3471
[14] DOI: 10.1103/PhysRevD.10.2599 · doi:10.1103/PhysRevD.10.2599
[15] DOI: 10.1103/PhysRevD.12.2060 · doi:10.1103/PhysRevD.12.2060
[16] DOI: 10.1103/PhysRevD.12.2875 · doi:10.1103/PhysRevD.12.2875
[17] DOI: 10.1103/PhysRevD.19.2148 · doi:10.1103/PhysRevD.19.2148
[18] DOI: 10.1103/PhysRevLett.50.141 · doi:10.1103/PhysRevLett.50.141
[19] DOI: 10.1016/0550-3213(84)90001-4 · doi:10.1016/0550-3213(84)90001-4
[20] DOI: 10.1103/PhysRevD.28.772 · doi:10.1103/PhysRevD.28.772
[21] DOI: 10.1016/0370-2693(83)91281-9 · doi:10.1016/0370-2693(83)91281-9
[22] DOI: 10.1016/0370-2693(83)91628-3 · doi:10.1016/0370-2693(83)91628-3
[23] DOI: 10.1063/1.526034 · doi:10.1063/1.526034
[24] DOI: 10.1063/1.526749 · Zbl 0554.58050 · doi:10.1063/1.526749
[25] DOI: 10.1016/0003-4916(84)90039-3 · doi:10.1016/0003-4916(84)90039-3
[26] DOI: 10.1103/PhysRevD.31.3064 · doi:10.1103/PhysRevD.31.3064
[27] DOI: 10.1142/S0217732312501507 · Zbl 1260.81187 · doi:10.1142/S0217732312501507
[28] DOI: 10.1103/PhysRevB.88.155410 · doi:10.1103/PhysRevB.88.155410
[29] DOI: 10.1103/PhysRevD.87.125031 · doi:10.1103/PhysRevD.87.125031
[30] DOI: 10.1103/PhysRevLett.110.250403 · doi:10.1103/PhysRevLett.110.250403
[31] DOI: 10.1103/PhysRevB.87.205433 · doi:10.1103/PhysRevB.87.205433
[32] DOI: 10.1103/PhysRevA.60.3410 · doi:10.1103/PhysRevA.60.3410
[33] DOI: 10.1103/PhysRevA.60.3421 · doi:10.1103/PhysRevA.60.3421
[34] DOI: 10.1103/PhysRevA.64.042102 · doi:10.1103/PhysRevA.64.042102
[35] Greiner W., Field Quantization (2008)
[36] Morse P. M., Methods of Theoretical Physics (1953) · Zbl 0051.40603
[37] Gradshteyn I., Table of Integrals, Series and Products, 7. ed. (2007) · Zbl 1208.65001
[38] Landau L., Statistical Physics, 3. ed. (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.