×

zbMATH — the first resource for mathematics

Optimal pricing and ordering policy for non-instantaneous deteriorating items under inflation and customer returns. (English) Zbl 1298.90006
Summary: This paper deals with an economic production quantity inventory model for non-instantaneous deteriorating items under inflationary conditions considering customer returns. We adopt a price- and time-dependent demand function. Also, the customer returns are considered as a function of both price and demand. The effects of time value of money are studied using the Discounted Cash Flow approach. The main objective is to determine the optimal selling price, the optimal replenishment cycles, and the optimal production quantity simultaneously such that the present value of total profit is maximized. An efficient algorithm is presented to find the optimal solution. Finally, numerical examples are provided to solve the presented inventory model using our proposed algorithm, which is further clarified through a sensitivity analysis. The results of analysing customer returns provide important suggestions to financial managers who use price as a control to match the quantity sold to inventory while maximizing revenues. The paper ends with a conclusion and an outlook to future studies.

MSC:
90B05 Inventory, storage, reservoirs
78M50 Optimization problems in optics and electromagnetic theory
91B24 Microeconomic theory (price theory and economic markets)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.ejor.2008.01.030 · Zbl 1159.90362
[2] DOI: 10.1287/trsc.33.2.233 · Zbl 1002.90032
[3] DOI: 10.1287/msom.5.3.203.16031
[4] DOI: 10.1287/mnsc.49.10.1287.17315 · Zbl 1232.90042
[5] DOI: 10.1287/opre.47.3.454 · Zbl 0979.90004
[6] DOI: 10.1016/0360-8352(93)90040-5
[7] Ghare PM, Int. J. Prod. Res 21 pp 449– (1963)
[8] DOI: 10.1080/05695557308974918
[9] DOI: 10.1016/S0377-2217(00)00248-4 · Zbl 0978.90004
[10] DOI: 10.1016/S0305-0548(99)00086-6 · Zbl 0976.90001
[11] DOI: 10.1287/mnsc.42.8.1093 · Zbl 0879.90069
[12] DOI: 10.1016/j.omega.2005.05.002
[13] DOI: 10.1016/j.cie.2006.10.009
[14] DOI: 10.1016/j.ejor.2004.05.003 · Zbl 1077.90002
[15] DOI: 10.1016/j.cor.2007.01.024 · Zbl 1140.91358
[16] DOI: 10.1080/02331934.2011.590485 · Zbl 1233.90045
[17] DOI: 10.1016/j.apm.2012.07.026 · Zbl 1351.90018
[18] DOI: 10.1016/j.econmod.2012.09.049
[19] DOI: 10.1016/j.mcm.2011.08.009 · Zbl 1255.90021
[20] DOI: 10.1016/j.amc.2012.01.053 · Zbl 1245.90007
[21] Sett BK, Sci. Iranica Trans. E: Ind. Eng 19 pp 306– (2012)
[22] DOI: 10.1016/j.econmod.2012.11.045
[23] DOI: 10.1016/j.ijpe.2005.01.010
[24] DOI: 10.1016/j.cie.2006.07.012
[25] DOI: 10.1016/j.ijpe.2009.06.042
[26] Yang CT, Retailers optimal pricing and ordering policies for non-instantaneous deteriorating items with price-dependent demand and partial backlogging 2009 (2009) · Zbl 1177.90030
[27] DOI: 10.1016/j.cam.2009.10.031 · Zbl 1183.90019
[28] DOI: 10.1016/j.ijpe.2011.09.013
[29] DOI: 10.1016/j.ijpe.2011.09.020
[30] DOI: 10.1016/j.mcm.2011.11.017 · Zbl 1255.90019
[31] DOI: 10.1057/jors.1975.113
[32] DOI: 10.1002/nav.3800260116 · Zbl 0396.90031
[33] DOI: 10.1016/j.amc.2006.01.039 · Zbl 1142.90385
[34] Park KS, Int. J. Policy Inf 10 pp 65– (1986)
[35] DOI: 10.1016/0377-2217(91)90167-T
[36] DOI: 10.1080/00207729108910600 · Zbl 0709.90028
[37] DOI: 10.1080/07408179208964207
[38] DOI: 10.1016/0925-5273(94)90047-7
[39] DOI: 10.1016/0377-2217(94)00256-8 · Zbl 0913.90093
[40] DOI: 10.1016/S0925-5273(99)00034-1
[41] DOI: 10.1016/S0377-2217(99)00270-2 · Zbl 0971.90005
[42] Mirzazadeh A, Sarfaraz AR. Constrained multiple items optimal order policy under stochastic inflationary conditions. In: Proceedings of the 2nd Annual International Conference on Industrial Engineering Application and Practice; 1997; San Diego, CA, USA. p. 725–730.
[43] DOI: 10.1016/j.ejor.2006.12.037 · Zbl 1142.90005
[44] DOI: 10.1080/00207720802088264 · Zbl 1155.90312
[45] DOI: 10.1016/j.amc.2010.12.098 · Zbl 1208.90012
[46] Sarkar B, Expert Syst. Appl 38 pp 13543– (2011)
[47] DOI: 10.1016/S0925-5273(00)00121-3
[48] DOI: 10.1016/j.eswa.2010.04.004
[49] DOI: 10.1016/j.cie.2006.10.009
[50] DOI: 10.1080/00207720601014206 · Zbl 1284.90017
[51] DOI: 10.1007/s12597-012-0115-0 · Zbl 1353.90008
[52] Ghoreishi M, J. Ind. Eng (2013)
[53] DOI: 10.1016/j.econmod.2012.11.019
[54] DOI: 10.1016/j.amc.2011.10.053 · Zbl 1239.90008
[55] Sarkar B, Expert Syst. Appl 38 pp 13543– (2011)
[56] DOI: 10.1016/j.amc.2010.12.098 · Zbl 1208.90012
[57] DOI: 10.1504/IJMOR.2010.032723 · Zbl 1188.90016
[58] DOI: 10.1016/j.camwa.2011.09.050 · Zbl 1247.90021
[59] Mirzazadeh A, Res. J. Appl. Sci. Eng. Technol 4 pp 306– (2012)
[60] DOI: 10.1002/(SICI)1522-7138(199721)11:2<20::AID-DIR4>3.0.CO;2-#
[61] DOI: 10.1287/mksc.4.2.166
[62] DOI: 10.1016/j.ejor.2011.07.024 · Zbl 1237.90033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.