zbMATH — the first resource for mathematics

An alternative subtraction scheme for next-to-leading order QCD calculations. (English) Zbl 1298.81374
Summary: We propose a new subtraction scheme for next-to-leading order QCD calculations. Our scheme is based on the momentum mapping and on the splitting functions derived in the context of an improved parton shower formulation. Compared to standard schemes, the new scheme features a significantly smaller number of subtraction terms and facilitates the matching of NLO calculations with parton showers including quantum interference. We provide formulae for the momentum mapping and the subtraction terms, and present a detailed comparison with the Catani-Seymour dipole subtraction for a variety of \(2 \to 2\) scattering processes.
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81U05 \(2\)-body potential quantum scattering theory
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Particle Data Group collaboration; Nakamura, K.; etal., Review of particle physics, J. Phys., G 37, 075021, (2010)
[2] http://press.web.cern.ch/press/PressReleases/Releases2009/PR16.09E.html.
[3] J.R. Andersenet al., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
[4] http://mcfm.fnal.gov.
[5] http://nagyz.web.cern.ch/nagyz/Site/NLOJet++.html.
[6] Arnold, K.; etal., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun., 180, 1661, (2009)
[7] Ellis, RK; Giele, WT; Zanderighi, G., Semi-numerical evaluation of one-loop corrections, Phys. Rev., D 73, 014027, (2006)
[8] Berger, CF; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[9] Berger, CF; etal., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev., D 80, 074036, (2009)
[10] Binoth, T.; etal., Next-to-leading order QCD corrections to \( pp → b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett., B 685, 293, (2010)
[11] Kanaki, A.; Papadopoulos, CG, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000)
[12] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., Assault on the NLO wishlist: pp → ttbb, JHEP, 09, 109, (2009)
[13] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp → t\bar{t} + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[14] Collins, J., Monte-Carlo event generators at NLO, Phys. Rev., D 65, 094016, (2002)
[15] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[16] Krämer, M.; Soper, DE, Next-to-leading order QCD calculations with parton showers I: collinear singularities, Phys. Rev., D 69, 054019, (2004)
[17] Soper, DE, Next-to-leading order QCD calculations with parton showers. II: soft singularities, Phys. Rev., D 69, 054020, (2004)
[18] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[19] Nagy, Z.; Soper, DE, Matching parton showers to NLO computations, JHEP, 10, 024, (2005)
[20] Bauer, CW; Schwartz, MD, Event generation from effective field theory, Phys. Rev., D 76, 074004, (2007)
[21] Giele, WT; Kosower, DA; Skands, PZ, A simple shower and matching algorithm, Phys. Rev., D 78, 014026, (2008)
[22] Lavesson, N.; Lönnblad, L., Extending CKKW - merging to one-loop matrix elements, JHEP, 12, 070, (2008)
[23] Torrielli, P.; Frixione, S., Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP, 04, 110, (2010)
[24] S. Frixione et al., NLO QCD corrections in Herwig++ with MC@NLO, arXiv:1010.0568 [SPIRES].
[25] S. Frixione et al., The MCaNLO 4.0 event generator, arXiv:1010.0819 [SPIRES].
[26] Frixione, S.; Nason, P.; Oleari, C., Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP, 11, 070, (2007)
[27] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043, (2010)
[28] S. Hoche et al., Automating the POWHEG method in Sherpa, arXiv:1008.5399 [SPIRES].
[29] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[30] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[31] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[32] Dittmaier, S., A general approach to photon radiation off fermions, Nucl. Phys., B 565, 69, (2000)
[33] Catani, S.; Dittmaier, S.; Seymour, MH; Trócsányi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys., B 627, 189, (2002)
[34] Weinzierl, S., Subtraction terms for one-loop amplitudes with one unresolved parton, JHEP, 07, 052, (2003)
[35] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[36] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[37] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole — automated generation of dipole subtraction terms, Comput. Phys. Commun., 181, 1802, (2010)
[38] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[39] Frederix, R.; Gehrmann, T.; Greiner, N., Integrated dipoles with maddipole in the madgraph framework, JHEP, 06, 086, (2010)
[40] Nagy, Z.; Soper, DE, Parton showers with quantum interference, JHEP, 09, 114, (2007)
[41] Nagy, Z.; Soper, DE, Parton showers with quantum interference: leading color, spin averaged, JHEP, 03, 030, (2008)
[42] Nagy, Z.; Soper, DE, Parton showers with quantum interference: leading color, with spin, JHEP, 07, 025, (2008)
[43] Krämer, M.; Mrenna, S.; Soper, DE, Next-to-leading order QCD jet production with parton showers and hadronization, Phys. Rev., D 73, 014022, (2006)
[44] T. Robens and C.H. Chung, Alternative subtraction scheme using Nagy Soper dipoles, PoS(RADCOR2009)072.
[45] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys., B 126, 298, (1977)
[46] Bassetto, A.; Ciafaloni, M.; Marchesini, G., Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept., 100, 201, (1983)
[47] Y.L. Dokshitzer et al., Basics of perturbative QCD. Ed. Frontieres, France (1991), p. 274.
[48] G. Somogyi and Z. Trocsanyi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [SPIRES].
[49] Huber, T.; Maître, D., Hypexp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun., 175, 122, (2006)
[50] Huber, T.; Maître, D., Hypexp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun., 178, 755, (2008)
[51] Kalinowski, J.; Kilian, W.; Reuter, J.; Robens, T.; Rolbiecki, K., Pinning down the invisible sneutrino, JHEP, 10, 090, (2008)
[52] Hahn, T., CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78, (2005)
[53] Ellis, RK; Stirling, WJ; Webber, BR, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 8, 1, (1996)
[54] Pumplin, J.; etal., New generation of parton distributions with uncertainties from global QCD analysis, JHEP, 07, 012, (2002)
[55] Ellis, JR; Gaillard, MK; Nanopoulos, DV, A phenomenological profile of the Higgs boson, Nucl. Phys., B 106, 292, (1976)
[56] Shifman, MA; Vainshtein, AI; Voloshin, MB; Zakharov, VI, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys., 30, 711, (1979)
[57] Vainshtein, AI; Zakharov, VI; Shifman, MA, Higgs particles, Sov. Phys. Usp., 23, 429, (1980)
[58] Voloshin, MB, Once again about the role of gluonic mechanism in interaction of light Higgs boson with hadrons, Sov. J. Nucl. Phys., 44, 478, (1986)
[59] Djouadi, A.; Spira, M.; Zerwas, PM, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett., B 264, 440, (1991)
[60] Dawson, S., Radiative corrections to Higgs boson production, Nucl. Phys., B 359, 283, (1991)
[61] G. Altarelli, A QCD primer, hep-ph/0204179 [SPIRES].
[62] R.K. Ellis, An introduction to the QCD parton model, lectures given at 1987 Theoretical Advanced Study Inst. in Elementary Particle Physics, July 5 - August 1, Santa Fe, New Mexico, U.S.A. (1987).
[63] Djouadi, A.; Spira, M.; Zerwas, PM, QCD corrections to hadronic Higgs decays, Z. Phys., C 70, 427, (1996)
[64] T. Hahn, The formcalc homepage, http://www.feynarts.de/formcalc/.
[65] Ohl, T., Vegas revisited: adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun., 120, 13, (1999)
[66] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[67] M. Czakon, M. Krämer and M. Kubocz, work in progress.
[68] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[69] Gribov, VN; Lipatov, LN, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys., 15, 438, (1972)
[70] Lipatov, LN, The parton model and perturbation theory, Sov. J. Nucl. Phys., 20, 94, (1975)
[71] Dokshitzer, YL, Calculation of the structure functions for deep inelastic scattering and \(e\)\^{}{+}\(e\)\^{}{−} annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP, 46, 641, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.