×

MadGraph 5: going beyond. (English) Zbl 1298.81362

Summary: MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81-08 Computational methods for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
[2] CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from lagrangians to events, Nucl. Instrum. Meth.A 534 (2004) 250 [hep-ph/0403113] [SPIRES].
[3] A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
[4] T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun.81 (1994) 357 [hep-ph/9401258] [SPIRES].
[5] F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP02 (2003) 027 [hep-ph/0208156] [SPIRES].
[6] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP09 (2007) 028 [arXiv:0706.2334] [SPIRES].
[7] T. Gleisberg et al., SHERPA 1.alpha, a proof-of-concept version, JHEP02 (2004) 056 [hep-ph/0311263] [SPIRES].
[8] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [SPIRES].
[9] P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett.B 439 (1998) 157 [hep-ph/9807207] [SPIRES].
[10] C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [SPIRES].
[11] M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].
[12] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[13] W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.
[14] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [SPIRES].
[15] C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].
[16] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP12 (2008) 039 [arXiv:0808.3674] [SPIRES].
[17] N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun.180 (2009) 1614 [arXiv:0806.4194] [SPIRES].
[18] N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J.C 71 (2011) 1541 [arXiv:0906.2474] [SPIRES].
[19] C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES]. · Zbl 1262.81169
[20] C. Degrande et al., UFO — The Universal FeynRules Output.
[21] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].
[22] M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[23] K. Hasegawa, S. Moch and P. Uwer, Automating dipole subtraction, Nucl. Phys. Proc. Suppl.183 (2008) 268 [arXiv:0807.3701] [SPIRES].
[24] R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [SPIRES].
[25] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES].
[26] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES].
[27] G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].
[28] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [SPIRES].
[29] C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES].
[30] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES].
[31] C.F. Berger et al., Next-to-Leading Order QCD predictions for Z, γ∗ + 3-jet distributions at the Tevatron, Phys. Rev.D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].
[32] C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [SPIRES].
[33] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[34] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [SPIRES]. · Zbl 1296.81138
[35] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [SPIRES]. · Zbl 1368.81015
[36] G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [SPIRES].
[37] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [SPIRES].
[38] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP11 (2001) 063 [hep-ph/0109231] [SPIRES].
[39] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP08 (2002) 015 [hep-ph/0205283] [SPIRES].
[40] S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP05 (2004) 040 [hep-ph/0312274] [SPIRES].
[41] M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP01 (2007) 013 [hep-ph/0611129] [SPIRES].
[42] L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP05 (2002) 046 [hep-ph/0112284] [SPIRES].
[43] N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP07 (2005) 054 [hep-ph/0503293] [SPIRES].
[44] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP05 (2009) 053 [arXiv:0903.1219] [SPIRES].
[45] S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
[46] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J.C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].
[47] F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the Tevatron, Phys. Rev.D 70 (2004) 114009 [hep-ph/0409106] [SPIRES].
[48] C. Englert, T. Plehn, P. Schichtel and S. Schumann, Jets plus missing energy with an autofocus, Phys. Rev.D 83 (2011) 095009 [arXiv:1102.4615] [SPIRES].
[49] J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP02 (2009) 017 [arXiv:0810.5350] [SPIRES].
[50] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [SPIRES].
[51] S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP08 (2003) 007 [hep-ph/0305252] [SPIRES].
[52] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [SPIRES].
[53] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [SPIRES]. · Zbl 1290.81155
[54] J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.
[55] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [SPIRES]. · Zbl 1196.81038
[56] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11.
[57] G.C. Cho et al., Weak boson fusion production of supersymmetric particles at the LHC, Phys. Rev.D 73 (2006) 054002 [hep-ph/0601063] [SPIRES].
[58] A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys.B 387 (1992) 467 [SPIRES].
[59] M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [SPIRES].
[60] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [SPIRES].
[61] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of QCD amplitudes, Phys. Rev.D 67 (2003) 014026 [hep-ph/0209271] [SPIRES].
[62] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.B 306 (1988) 759 [SPIRES].
[63] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [SPIRES]. · Zbl 1207.81088
[64] S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES]. · Zbl 1301.81294
[65] T. Han, I. Lewis and T. McElmurry, QCD corrections to scalar diquark production at hadron colliders, JHEP01 (2010) 123 [arXiv:0909.2666] [SPIRES]. · Zbl 1269.81197
[66] J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun.176 (2007) 300 [hep-ph/0609017] [SPIRES].
[67] J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].
[68] K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J.C 56 (2008) 435 [arXiv:0805.2554] [SPIRES].
[69] K. Hagiwara, K. Mawatari and Y. Takaesu, HELAS and MadGraph with spin-3/2 particles, Eur. Phys. J.C 71 (2011) 1529 [arXiv:1010.4255] [SPIRES].
[70] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[71] N. D. Christensen and C. Speckner, Automated validation of FeynRules models.
[72] C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev.D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].
[73] J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys.B 843 (2011) 638 [arXiv:1008.3562] [SPIRES]. · Zbl 1207.81064
[74] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP03 (2011) 125 [arXiv:1010.6304] [SPIRES].
[75] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].
[76] S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
[77] J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html
[78] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [SPIRES]. · Zbl 0946.81074
[79] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [SPIRES]. · Zbl 0946.81063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.