×

zbMATH — the first resource for mathematics

One-loop adjoint masses for non-supersymmetric intersecting branes. (English) Zbl 1298.81230
Summary: We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values. We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes. In the open string channel, the string two-point function receives contributions only from the infrared and the ultraviolet limits. The latter is due to tree-level closed string uncanceled NS-NS tadpoles, which we explicitly reproduce from the effective Born-Infeld action. On the other hand, the infrared region reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations. In the toroidal set-up considered here, it receives contributions only from \(N \approx 4\) and \(N \approx 2\) supersymmetric configurations, and thus always leads at leading order to a tachyonic direction, in agreement with effective field theory expectations.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81R40 Symmetry breaking in quantum theory
81T18 Feynman diagrams
78A60 Lasers, masers, optical bistability, nonlinear optics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] C. Bachas, A Way to break supersymmetry, hep-th/9503030 [SPIRES].
[2] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Type-I strings on magnetised orbifolds and brane transmutation, Phys. Lett., B 489, 223, (2000)
[3] Berkooz, M.; Douglas, MR; Leigh, RG, Branes intersecting at angles, Nucl. Phys., B 480, 265, (1996)
[4] Blumenhagen, R.; Görlich, L.; Körs, B.; Lüst, D., Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP, 10, 006, (2000)
[5] Antoniadis, I.; Delgado, A.; Benakli, K.; Quirós, M.; Tuckmantel, M., Splitting extended supersymmetry, Phys. Lett., B 634, 302, (2006)
[6] Antoniadis, I.; Benakli, K.; Delgado, A.; Quirós, M.; Tuckmantel, M., Split extended supersymmetry from intersecting branes, Nucl. Phys., B 744, 156, (2006)
[7] Antoniadis, I.; Gava, E.; Narain, KS; Taylor, TR, Duality in superstring compactifications with magnetic field backgrounds, Nucl. Phys., B 511, 611, (1998)
[8] Kachru, S.; McGreevy, J., Supersymmetric three-cycles and (super)symmetry breaking, Phys. Rev., D 61, 026001, (2000)
[9] Mihailescu, M.; Park, IY; Tran, TA, \(D\)-branes as solitons of an \(N\) = 1, \(D\) = 10 non-commutative gauge theory, Phys. Rev., D 64, 046006, (2001)
[10] Witten, E., BPS bound states of D0-D6 and D0-D8 systems in a B-field, JHEP, 04, 012, (2002)
[11] Cremades, D.; Ibáñez, LE; Marchesano, F., SUSY quivers, intersecting branes and the modest hierarchy problem, JHEP, 07, 009, (2002)
[12] Antoniadis, I.; Narain, KS; Taylor, TR, Open string topological amplitudes and gaugino masses, Nucl. Phys., B 729, 235, (2005)
[13] Ibáñez, LE; Marchesano, F.; Rabadán, R., Getting just the standard model at intersecting branes, JHEP, 11, 002, (2001)
[14] Gomez-Reino, M.; Zavala, I., Recombination of intersecting D-branes and cosmological inflation, JHEP, 09, 020, (2002)
[15] A. Hebecker, S.C. Kraus, D. Lüst, S. Steinfurt and T. Weigand, Fluxbrane Inflation, arXiv:1104.5016 [SPIRES].
[16] Poppitz, E., On the one loop Fayet-Iliopoulos term in chiral four dimensional type-I orbifolds, Nucl. Phys., B 542, 31, (1999)
[17] Bain, P.; Berg, M., Effective action of matter fields in four-dimensional string orientifolds, JHEP, 04, 013, (2000)
[18] Berg, M.; Haack, M.; Körs, B., String loop corrections to Kähler potentials in orientifolds, JHEP, 11, 030, (2005)
[19] Abel, SA; Goodsell, MD, Intersecting brane worlds at one loop, JHEP, 02, 049, (2006)
[20] Abel, SA; Goodsell, MD, Realistic Yukawa couplings through instantons in intersecting brane worlds, JHEP, 10, 034, (2007)
[21] Benakli, K.; Goodsell, MD, Two-point functions of chiral fields at one loop in type II, Nucl. Phys., B 805, 72, (2008)
[22] Conlon, JP; Goodsell, M.; Palti, E., One-loop Yukawa couplings in local models, JHEP, 11, 087, (2010)
[23] J.P. Conlon, M. Goodsell and E. Palti, Anomaly Mediation in Superstring Theory, arXiv:1008.4361 [SPIRES].
[24] Antoniadis, I.; Kiritsis, E.; Rizos, J., Anomalous U(1)s in type-I superstring vacua, Nucl. Phys., B 637, 92, (2002)
[25] Anastasopoulos, P., 4D anomalous U(1)’s, their masses and their relation to 6D anomalies, JHEP, 08, 005, (2003)
[26] Anastasopoulos, P., Anomalous U(1)s masses in non-supersymmetric open string vacua, Phys. Lett., B 588, 119, (2004)
[27] P. Anastasopoulos, Orientifolds, anomalies and the standard model, Ph.D. Thesis, University of Crete, Heraklion Greece (2005) [hep-th/0503055] [SPIRES].
[28] Fischler, W.; Susskind, L., Dilaton tadpoles, string condensates and scale invariance, Phys. Lett., B 171, 383, (1986)
[29] Fischler, W.; Susskind, L., Dilaton tadpoles, string condensates and scale invariance. 2, Phys. Lett., B 173, 262, (1986)
[30] Dudas, E.; Pradisi, G.; Nicolosi, M.; Sagnotti, A., On tadpoles and vacuum redefinitions in string theory, Nucl. Phys., B 708, 3, (2005)
[31] Lüst, D.; Stieberger, S., Gauge threshold corrections in intersecting brane world models, Fortsch. Phys., 55, 427, (2007)
[32] Vecchia, P.; Magnea, L.; Lerda, A.; Russo, R.; Marotta, R., String techniques for the calculation of renormalization constants in field theory, Nucl. Phys., B 469, 235, (1996)
[33] Fayet, P., Massive gluinos, Phys. Lett., B 78, 417, (1978)
[34] Antoniadis, I.; Benakli, K.; Delgado, A.; Quirós, M., A new gauge mediation theory, Adv. Stud. Theor. Phys., 2, 645, (2008)
[35] Benakli, K.; Goodsell, MD, Dirac gauginos in general gauge mediation, Nucl. Phys., B 816, 185, (2009)
[36] Angelantonj, C.; Cardella, M.; Irges, N., Scherk-Schwarz breaking and intersecting branes, Nucl. Phys., B 725, 115, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.