×

zbMATH — the first resource for mathematics

Holographic and Wilsonian renormalization groups. (English) Zbl 1298.81181
Summary: We develop parallels between the holographic renormalization group in the bulk and the Wilsonian renormalization group in the dual field theory. Our philosophy differs from most previous work on the holographic RG; the most notable feature is the key role of multi-trace operators. We work out the forms of various single-and double-trace flows. The key question, ‘what cutoff on the field theory corresponds to a radial cutoff in the bulk?’ is left unanswered, but by sharpening the analogy between the two sides we identify possible directions.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Maldacena, JM, The large \(N\) limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999)
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from non-critical string theory, Phys. Lett., B 428, 105, (1998)
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998)
[4] Wilson, KG, The renormalization group and critical phenomena, Rev. Mod. Phys., 55, 583, (1983)
[5] Susskind, L.; Thorlacius, L.; Uglum, J., The stretched horizon and black hole complementarity, Phys. Rev., D 48, 3743, (1993)
[6] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].
[7] Mansfield, P.; Nolland, D., One-loop conformal anomalies from AdS/CFT in the schroedinger representation, JHEP, 07, 028, (1999)
[8] Bousso, R., Complementarity in the multiverse, Phys. Rev., D 79, 123524, (2009)
[9] Tseytlin, AA; Zarembo, K., Effective potential in non-supersymmetric SU(\(N\)) × SU(\(N\)) gauge theory and interactions of type 0 D3-branes, Phys. Lett., B 457, 77, (1999)
[10] Csáki, C.; Skiba, W.; Terning, J., \(β\)-functions of orbifold theories and the hierarchy problem, Phys. Rev., D 61, 025019, (2000)
[11] Adams, A.; Silverstein, E., Closed string tachyons, AdS/CFT and large-\(N\) QCD, Phys. Rev., D 64, 086001, (2001)
[12] Dymarsky, A.; Klebanov, IR; Roiban, R., Perturbative search for fixed lines in large-\(N\) gauge theories, JHEP, 08, 011, (2005)
[13] Dymarsky, A.; Klebanov, IR; Roiban, R., Perturbative gauge theory and closed string tachyons, JHEP, 11, 038, (2005)
[14] Pomoni, E.; Rastelli, L., Large-\(N\) field theory and AdS tachyons, JHEP, 04, 020, (2009)
[15] Li, M., A note on relation between holographic RG equation and polchinski’s RG equation, Nucl. Phys. B, 579, 525, (2000)
[16] Petkou, AC, Boundary multi-trace deformations and OPEs in AdS/CFT correspondence, JHEP, 06, 009, (2002)
[17] E.T. Akhmedov, Notes on multi-trace operators and holographic renormalization group, hep-th/0202055 [SPIRES].
[18] Becchi, C.; Giusto, S.; Imbimbo, C., The Wilson-polchinski renormalization group equation in the planar limit, Nucl. Phys., B 633, 250, (2002)
[19] Aharony, O.; Berkooz, M.; Silverstein, E., Multiple-trace operators and non-local string theories, JHEP, 08, 006, (2001)
[20] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].
[21] Hertog, T.; Horowitz, GT, Towards a big crunch dual, JHEP, 07, 073, (2004)
[22] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023, (1998)
[23] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849, (2002)
[24] Gibbons, GW; Hawking, SW, Action integrals and partition functions in quantum gravity, Phys. Rev., D 15, 2752, (1977)
[25] Lee, S-S, Holographic description of quantum field theory, Nucl. Phys., B 832, 567, (2010)
[26] Wheeler, JA, Superspace and the nature of quantum geometrodynamics, (1968), New York U.S.A.
[27] DeWitt, BS, Quantum theory of gravity. 1. the canonical theory, Phys. Rev., 160, 1113, (1967)
[28] T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, arXiv:1001.5049 [SPIRES].
[29] Klebanov, IR; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys., B 556, 89, (1999)
[30] Berkooz, M.; Sever, A.; Shomer, A., Double-trace deformations, boundary conditions and spacetime singularities, JHEP, 05, 034, (2002)
[31] Mueck, W., An improved correspondence formula for AdS/CFT with multi-trace operators, Phys. Lett., B 531, 301, (2002)
[32] Minces, P., Multi-trace operators and the generalized AdS/CFT prescription, Phys. Rev., D 68, 024027, (2003)
[33] Sever, A.; Shomer, A., A note on multi-trace deformations and AdS/CFT, JHEP, 07, 027, (2002)
[34] D. Nickel and D.T. Son, Deconstructing holographic liquids, arXiv:1009.3094 [SPIRES].
[35] Klebanov, IR; Witten, E., Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys., B 536, 199, (1998)
[36] Akhmedov, ET, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett., B 442, 152, (1998)
[37] Alvarez, E.; Gomez, C., Geometric holography, the renormalization group and the c-theorem, Nucl. Phys., B 541, 441, (1999)
[38] Girardello, L.; Petrini, M.; Porrati, M.; Zaffaroni, A., Novel local CFT and exact results on perturbations of \(N\) = 4 super Yang-Mills from AdS dynamics, JHEP, 12, 022, (1998)
[39] Distler, J.; Zamora, F., Non-supersymmetric conformal field theories from stable anti-de Sitter spaces, Adv. Theor. Math. Phys., 2, 1405, (1999)
[40] Freedman, DZ; Gubser, SS; Pilch, K.; Warner, NP, Renormalization group flows from holography supersymmetry and a \(c\)-theorem, Adv. Theor. Math. Phys., 3, 363, (1999)
[41] Porrati, M.; Starinets, A., RG fixed points in supergravity duals of 4 − D field theory and asymptotically AdS spaces, Phys. Lett., B 454, 77, (1999)
[42] Muck, W., Spectral functions in holographic renormalization group flows, JHEP, 01, 060, (2009)
[43] Gibbons, GW; Hawking, SW; Perry, MJ, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys., B 138, 141, (1978)
[44] Polchinski, J., Renormalization and effective Lagrangians, Nucl. Phys., B 231, 269, (1984)
[45] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079, (2009)
[46] Heemskerk, I.; Sully, J., More holography from conformal field theory, JHEP, 09, 099, (2010)
[47] A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, arXiv:1007.2412 [SPIRES].
[48] Boer, J.; Verlinde, EP; Verlinde, HL, On the holographic renormalization group, JHEP, 08, 003, (2000)
[49] Boer, J., The holographic renormalization group, Fortsch. Phys., 49, 339, (2001)
[50] Verlinde, EP; Verlinde, HL, RG-flow, gravity and the cosmological constant, JHEP, 05, 034, (2000)
[51] Lawrence, A.; Sever, A., Holography and renormalization in Lorentzian signature, JHEP, 10, 013, (2006)
[52] Balasubramanian, V.; Kraus, P., Spacetime and the holographic renormalization group, Phys. Rev. Lett., 83, 3605, (1999)
[53] Lewandowski, A.; May, MJ; Sundrum, R., Running with the radius in RS1, Phys. Rev., D 67, 024036, (2003)
[54] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].
[55] Verlinde, EP; Verlinde, HL, RG-flow, gravity and the cosmological constant, JHEP, 05, 034, (2000)
[56] U. Ellwanger, Brane universes, AdS/CFT, Hamiltonian formalism and the renormalization group, hep-th/0009006 [SPIRES].
[57] Vecchi, L., Multitrace deformations, Gamow states and stability of AdS/CFT, JHEP, 04, 056, (2011)
[58] Iqbal, N.; Liu, H., Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev., D 79, 025023, (2009)
[59] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., Wilsonian approach to fluid/gravity duality, JHEP, 03, 141, (2011)
[60] T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, arXiv:1010.4036 [SPIRES].
[61] Faulkner, T.; Horowitz, GT; Roberts, MM, New stability results for Einstein scalar gravity, Class. Quant. Grav., 27, 205007, (2010)
[62] Faulkner, T.; Horowitz, GT; Roberts, MM, Holographic quantum criticality from multi-trace deformations, JHEP, 04, 051, (2011)
[63] Jevicki, A.; Rodrigues, JP, Loop space Hamiltonians and field theory of noncritical strings, Nucl. Phys., B 421, 278, (1994)
[64] Fukuma, M.; Ishibashi, N.; Kawai, H.; Ninomiya, M., Two-dimensional quantum gravity in temporal gauge, Nucl. Phys., B 427, 139, (1994)
[65] Lifschytz, G.; Periwal, V., Schwinger-Dyson = Wheeler-dewitt: gauge theory observables as bulk operators, JHEP, 04, 026, (2000)
[66] Brustein, R.; Alwis, SP, Renormalization group equation and nonperturbative effects in string field theory, Nucl. Phys., B 352, 451, (1991)
[67] Akhmedov, ET; Musaev, ET, An exact result for Wilsonian and holographic renormalization group, Phys. Rev., D 81, 085010, (2010)
[68] Arnone, S.; Morris, TR; Rosten, OJ, Manifestly gauge invariant exact renormalization group, Conf, 990809, 174, (2000)
[69] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [SPIRES].
[70] Balasubramanian, V.; Kraus, P.; Lawrence, AE; Trivedi, SP, Holographic probes of anti-de Sitter space-times, Phys. Rev., D 59, 104021, (1999)
[71] Bena, I., On the construction of local fields in the bulk of ads5 and other spaces, Phys. Rev., D 62, 066007, (2000)
[72] Hamilton, A.; Kabat, DN; Lifschytz, G.; Lowe, DA, Holographic representation of local bulk operators, Phys. Rev., D 74, 066009, (2006)
[73] Arkani-Hamed, N.; Murayama, H., Holomorphy, rescaling anomalies and exact \(β\)-functions in supersymmetric gauge theories, JHEP, 06, 030, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.