zbMATH — the first resource for mathematics

Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response. (English) Zbl 1298.34078
Summary: We extend a previous study of a predator-prey model with strong Allee effect on the prey in which the functional response is a function of the ratio of prey to predator. We prove that the solutions are always bounded and non-negative, and that the species can always tend to long-term extinction. By means of bifurcation analysis and advanced numerical techniques for the computation of invariant manifolds of equilibria, we explain the consequences of the (dis)appearance of limit cycles, homoclinic orbits, and heteroclinic connections in the global arrangement of the phase plane near a Bogdanov-Takens bifurcation. In particular, we find that the Allee threshold in the two-dimensional system is given as the boundary of the basin of attraction of an attracting positive equilibrium, and determine conditions for the mutual extinction or survival of the populations.

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI
[1] Courchamp, F.; Berec, L.; Gascoigne, J., Allee effects in ecology and conservation, (2008), Oxford University Press
[2] Freedman, H. I., (Deterministic Mathematical Models in Population Ecology, Pure and Applied Mathematics: A Series of Monographs and Textbooks, vol. 57, (1980), Marcel Dekker, Inc. New York)
[3] Gause, G. F., The struggle for existence, (1934), The Williams & Wilkins Company Baltimore
[4] May, R. M., Stability and complexity in model ecosystems, (2001), Princeton University Press Princeton, NJ
[5] Turchin, P., (Complex Population Dynamics. A Theoretical/Empirical Synthesis, Monographs in Population Biology, vol. 35, (2003), Princeton University Press) · Zbl 1062.92077
[6] Harrison, G. W., Comparing predator-prey models to luckinbill’s experiment with didinium and paramecium, Ecology, 76, 357-374, (1995)
[7] Arditi, R.; Ginzburg, L. R., How species interact: altering the standard view on trophic ecology, (2012), Oxford University Press
[8] Haque, M., Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71, 430-452, (2009) · Zbl 1170.92027
[9] Hsu, S. B.; Hwang, T. W.; Kuang, Y., Global analysis of the michelis-Menten type ratio-dependent predator-prey system, J. Math. Biol., 42, 489-506, (2001) · Zbl 0984.92035
[10] Xiao, D.; Ruan, S., Global dynamics of ratio-dependent predator-prey system, J. Math. Biol., 43, 268-290, (2001) · Zbl 1007.34031
[11] Arditi, R.; Saïah, H., Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73, 1544-1551, (1992)
[12] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: ratio-dependance, J. Theoret. Biol., 139, 311-326, (1989)
[13] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 75, 1530-1535, (1992)
[14] Gutiérrez, A. P., The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of nicholsons blowflies as an example, Ecology, 73, 1552-1563, (1992)
[15] Ginzburg, L. R.; Akcakaya, H. R., Consequences of ratio-dependent predation for steady-state properties of ecosystems, Ecology, 73, 1536-1543, (1992)
[16] Slobodkin, L. B., A summary of the special feature and comments on its theoretical context and importance, Ecology, 73, 1564-1566, (1992)
[17] Médoc, V.; Spataro, T.; Arditi, R., Prey:predator ratio dependence in the functional response of a freshwater amphipod, Freshwater Biol., 58, 858-865, (2013)
[18] Spataro, T.; Bacher, S.; Bersier, L.-F.; Arditi, R., Ratio-dependent predation in a field experiment with wasps, Ecosphere, 3, (2012), Art 124
[19] Vadstein, O.; Oldsen, L. M.; Andersen, T., Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment, Ecology, 93, 1795-1801, (2012)
[20] Vucetich, J. A.; Hebblewhite, M.; Smith, D. W.; Peterson, R. O., Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems, J. Anim. Ecol., 80, 1236-1245, (2011)
[21] Stephens, P. A.; Sutherland, W. J., Consequences of the allee effect for behaviour, ecology and conservation, Trends Ecol., 14, 401-405, (1999)
[22] Stephens, P. A.; Sutherland, W. J.; Freckleton, R. P., What is the allee effect?, Oikos, 87, 185-190, (1999)
[23] Bascompte, J., Extinction thresholds: insights from simple models, Ann. Zool. Fennici., 40, 99-114, (2003)
[24] Clark, C. W., The worldwide crisis in fisheries: economic models and human behavior, (2006), Cambridge University Press
[25] Wolkowicz, G. S.W., Bifurcation analysis of a predator-prey system involving group defense, SIAM J. Appl. Math., 48, 592-606, (1988) · Zbl 0657.92015
[26] Xiao, D.; Ruan, S., Bifurcations in a predator-prey system with group defense, Int. J. Bifurcation Chaos, 11, 2123-2131, (2001) · Zbl 1091.92504
[27] Gascoigne, J.; Lipcius, R. N., Allee effects driven by predation, J. Appl. Ecol., 41, 801-810, (2004)
[28] Gregory, S.; Courchamp, F., Safety in numbers: extinction arising from predator-driven allee effects, J. Anim. Ecol., 79, 511-514, (2010)
[29] Kramer, A. M.; Drake, J. M., Experimental demonstration of population extinction due to a predator-driven allee effect, J. Anim. Ecol., 79, 633-639, (2010)
[30] Berezovskaya, F.; Karev, G.; Arditi, R., Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43, 221-246, (2001) · Zbl 0995.92043
[31] Jost, C.; Arino, O.; Arditi, R., About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61, 19-32, (1999) · Zbl 1323.92173
[32] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 389-406, (1998) · Zbl 0895.92032
[33] Sen, M.; Banerjee, M.; Morozov, A., Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect, Ecol. Complex., 11, 12-27, (2012)
[34] González-Olivares, E.; González-Yáñez, B.; Mena-Lorca, J.; Flores, J. D., Uniqueness of limit cycles and multiple attractors in a gause-type predator-prey model with nonmonotonic functional response and allee effect on prey, Math. Biosci. Eng., 10, 345-367, (2013) · Zbl 1260.92113
[35] González-Olivares, E.; Rojas-Palma, A., Limit cycles in a gause-type predator-prey model with Sigmoid functional response and weak allee effect on prey, Math. Methods Appl. Sci., 35, 963-975, (2012) · Zbl 1241.92072
[36] Hasík, K., On a predator-prey system of gause type, J. Math. Biol., 60, 59-74, (2010) · Zbl 1311.92159
[37] Wang, J.; Shi, J.; Wei, J., Predator-prey system with strong allee effect in prey, J. Math. Biol., 62, 291-331, (2011) · Zbl 1232.92076
[38] J.D. Flores, E. González-Olivares, A predator-prey model with ratio-dependent functional response and strong Allee effect, in: Recent Advances in Fluid Mechanics, Heat & Mass Transfer and Biology (Proceedings of the 9th WSEAS International Conference on Mathematical Biology and Ecology MABE’12), pp. 127-132.
[39] Arrowsmith, D. K.; Place, C. M., Dynamical systems. differential equations, maps and chaotic behaviour, (1992), Chapman & Hall · Zbl 0754.34001
[40] Kuznetsov, Yu. A., Elements of applied bifurcation theory, (2004), Springer-Verlag New York, Berlin · Zbl 1082.37002
[41] Doedel, E. J.; Champneys, A. R.; Dercole, F.; Fairgrieve, T. F.; Kuznetsov, Y.; Oldeman, B. E.; Paffenroth, R. C.; Sandstede, B.; Wang, X. J.; Zhang, C. H., AUTO-07p: continuation and bifurcation software for ordinary differential equations, (2010), Department of Computer Science, Concordia University Montreal, Canada, Available from http://cmvl.cs.concordia.ca/
[42] Aguirre, P.; Doedel, E.; Krauskopf, B.; Osinga, H. M., Investigating the consequences of global bifurcations for two-dimensional manifolds of vector fields, Discrete Contin. Dyn. Syst. Ser. A, 29, 1309-1344, (2011) · Zbl 1216.34035
[43] Krauskopf, B.; Osinga, H. M., Computing invariant manifolds via the continuation of orbit segments, (Krauskopf, B.; Osinga, H. M.; Galán-Vioque, J., Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst., (2007), Springer-Verlag New York), 117-154 · Zbl 1126.65111
[44] Aguirre, P.; González-Olivares, E.; Sáez, E., Three limit cycles in a Leslie-gower predator-prey model with additive allee effect, SIAM J. Appl. Math., 69, 1244-1262, (2009) · Zbl 1184.92046
[45] González-Olivares, E.; Mena-Lorca, J.; Rojas-Palma, A.; Flores, J. D., Dynamical complexities in the Leslie-gower predator-prey model as consequences of the allee effect on prey, Appl. Math. Model., 35, 366-381, (2011) · Zbl 1202.34079
[46] González-Olivares, E.; Rojas-Palma, A., Multiple limit cycles in a gause type predator-prey model with Holling type III functional response and allee effect on prey, Bull. Math. Biol., 73, 1378-1397, (2011) · Zbl 1215.92061
[47] Ruan, S.; Tang, Y.; Zhang, W., Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 24, 1410-1435, (2010) · Zbl 1205.34038
[48] Aguirre, P.; González-Olivares, E.; Sáez, E., Two limit cycles in a Leslie-gower predator-prey model with additive allee effect, Nonlinear Anal. RWA, 10, 1401-1416, (2009) · Zbl 1160.92038
[49] Chicone, C., (Ordinary Differential Equations With Applications, Texts in Applied Mathematics, vol. 34, (2006), Springer) · Zbl 1120.34001
[50] Govaerts, W., Computation of bogdanov-Takens type bifurcations with arbitrary codimension, SIAM J. Numer. Anal., 30, 1121-1133, (1995) · Zbl 0780.65037
[51] Griewank, A.; Reddien, G. W., Computation of cusp singularities for operator equations and their discretizations, J. Comput. Appl. Math., 26, 133-153, (1989) · Zbl 0672.65031
[52] Yang, L.; Werner, B., Analysis of Takens-bogdanov bifurcation by characteristic functions, Nonlinear Anal., 26, 363-381, (1996) · Zbl 0843.34046
[53] Govaerts, W., Numerical methods for bifurcations of dynamical equilibria, (2000), SIAM · Zbl 0935.37054
[54] Dhooge, A.; Govaerts, W.; Kuznetsov, Yu. A., MATCONT: a MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Software, 29, 141-164, (2003) · Zbl 1070.65574
[55] González-Olivares, E.; Mena-Lorca, J., Qualitative analysis of an open-access fishery model, Invest. Mar. Valparaíso, 22, 3-11, (1994)
[56] Arditi, R.; Berryman, A. A., The biological control paradox, Trends Ecol. Evolut., 6, 32-43, (1991)
[57] Sáez, E.; González-Olivares, E., Dynamics of a predator-prey model, SIAM J. Appl. Math., 59, 1867-1878, (1999) · Zbl 0934.92027
[58] Aguirre, P.; González-Olivares, E.; Torres, S., Stochastic predator-prey model with allee effect, Nonlinear Anal. RWA, 14, 768-779, (2013) · Zbl 1263.92043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.