# zbMATH — the first resource for mathematics

Genetic algorithm-based identification of fractional-order systems. (English) Zbl 1297.93062
Summary: Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA) is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

##### MSC:
 93B30 System identification 34A08 Fractional ordinary differential equations and fractional differential inclusions
Full Text:
##### References:
 [1] Samko, Fractional Integrals and Derivatives: Theory and applications (1993) [2] DOI: 10.1109/81.817385 · doi:10.1109/81.817385 [3] Oldham, The Fractional Calculus (1974) · Zbl 0206.46601 [4] Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002 [6] DOI: 10.1016/j.compstruc.2009.09.001 · doi:10.1016/j.compstruc.2009.09.001 [7] Dzielinski, Ultracapacitor modelling and control using discrete fractional order state-space model, Acta Montan. Slovaca 13 pp 136– (2008) [8] DOI: 10.1016/j.sigpro.2006.02.030 · Zbl 1172.93399 · doi:10.1016/j.sigpro.2006.02.030 [9] DOI: 10.1007/s11071-011-0266-1 · Zbl 1258.34074 · doi:10.1007/s11071-011-0266-1 [10] DOI: 10.1115/1.4002092 · doi:10.1115/1.4002092 [11] DOI: 10.1007/s11071-012-0475-2 · doi:10.1007/s11071-012-0475-2 [12] DOI: 10.1063/1.3678788 · Zbl 1331.34063 · doi:10.1063/1.3678788 [13] DOI: 10.1088/0031-8949/2009/T136/014014 · doi:10.1088/0031-8949/2009/T136/014014 [14] DOI: 10.1115/1.2833481 · doi:10.1115/1.2833481 [15] DOI: 10.1016/j.physleta.2009.05.026 · Zbl 1231.82024 · doi:10.1016/j.physleta.2009.05.026 [16] Machado, Entropy analysis of integer and fractional dynamical systems, Nonlinear Dyn. 62 pp 371– (2010) · Zbl 1211.37057 · doi:10.1007/s11071-010-9724-4 [17] DOI: 10.1515/jnet.1998.23.2.166 · Zbl 0912.76085 · doi:10.1515/jnet.1998.23.2.166 [18] DOI: 10.1016/S0378-4371(00)00174-6 · doi:10.1016/S0378-4371(00)00174-6 [19] DOI: 10.1016/j.physa.2009.09.009 · doi:10.1016/j.physa.2009.09.009 [20] DOI: 10.1103/PhysRevLett.101.010504 · doi:10.1103/PhysRevLett.101.010504 [21] DOI: 10.1115/1.4000563 · doi:10.1115/1.4000563 [22] Baleanu, New Trends in Nanotechnology and Fractional Calculus Applications (2010) [23] Sabatier, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007) · Zbl 1116.00014 [24] DOI: 10.1016/S0165-1684(03)00194-4 · Zbl 1145.94309 · doi:10.1016/S0165-1684(03)00194-4 [25] Takayasu, Fractals in the Physical Sciences (1990) [26] Fisher, Fractal Image Compression: Theory and Application (1995) [27] DOI: 10.1049/iet-cta.2010.0222 · doi:10.1049/iet-cta.2010.0222 [29] DOI: 10.1109/TBME.2010.2088121 · doi:10.1109/TBME.2010.2088121 [30] DOI: 10.1016/j.bspc.2007.07.013 · doi:10.1016/j.bspc.2007.07.013 [31] DOI: 10.1177/1077546307087440 · Zbl 1229.92019 · doi:10.1177/1077546307087440 [32] Oustaloup, From fractal robustness to the Crone control, Fract. Calc. Appl. Anal. 2 pp 1– (1999) · Zbl 1111.93310 [33] Machado, Discrete-time fractional-order controllers, Fract. Calc. Appl. Anal. 4 pp 47– (2001) [34] DOI: 10.1016/j.conengprac.2007.08.006 · doi:10.1016/j.conengprac.2007.08.006 [35] DOI: 10.1016/j.sigpro.2006.02.011 · Zbl 1172.94385 · doi:10.1016/j.sigpro.2006.02.011 [36] DOI: 10.3390/e15041357 · Zbl 1297.93126 · doi:10.3390/e15041357 [37] DOI: 10.1016/j.sigpro.2006.02.005 · Zbl 1172.94364 · doi:10.1016/j.sigpro.2006.02.005 [38] DOI: 10.1016/S0165-1684(03)00181-6 · doi:10.1016/S0165-1684(03)00181-6 [39] DOI: 10.1016/S0165-1684(03)00191-9 · Zbl 1145.70307 · doi:10.1016/S0165-1684(03)00191-9 [40] Yousfi, Design of centralized CRONE controller combined with MIMO-QFT approach applied to non-square multivariable systems, Int. J. Comput. Appl. 45 pp 6– (2012) [41] DOI: 10.1007/s11071-012-0695-5 · doi:10.1007/s11071-012-0695-5 [43] DOI: 10.1007/s11071-004-3770-8 · Zbl 1096.70004 · doi:10.1007/s11071-004-3770-8 [44] DOI: 10.1016/0888-3270(91)90016-X · doi:10.1016/0888-3270(91)90016-X [45] DOI: 10.1109/TIE.2009.2036643 · doi:10.1109/TIE.2009.2036643 [46] DOI: 10.1016/j.cnsns.2009.05.067 · doi:10.1016/j.cnsns.2009.05.067 [47] DOI: 10.2478/s11534-009-0085-x · doi:10.2478/s11534-009-0085-x [48] DOI: 10.1007/s11071-009-9486-z · Zbl 1183.26006 · doi:10.1007/s11071-009-9486-z [49] DOI: 10.1016/j.physa.2009.07.024 · doi:10.1016/j.physa.2009.07.024 [50] DOI: 10.1016/j.camwa.2009.08.004 · Zbl 1189.35356 · doi:10.1016/j.camwa.2009.08.004 [51] DOI: 10.1016/j.chaos.2004.02.013 · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013 [52] DOI: 10.1016/j.chaos.2005.11.062 · Zbl 1132.37308 · doi:10.1016/j.chaos.2005.11.062 [53] DOI: 10.1007/s11071-004-3751-y · Zbl 1134.93324 · doi:10.1007/s11071-004-3751-y [55] Lin, Identification of non-integer-order systems in frequency domain, J. Control Theory Appl. 25 pp 517– (2008) [56] DOI: 10.1080/00207179.2011.560397 · Zbl 1225.93079 · doi:10.1080/00207179.2011.560397 [57] DOI: 10.1016/S0165-1684(03)00185-3 · Zbl 1145.94372 · doi:10.1016/S0165-1684(03)00185-3 [58] DOI: 10.1016/S0165-1684(03)00182-8 · Zbl 1145.93433 · doi:10.1016/S0165-1684(03)00182-8 [59] DOI: 10.1016/0013-4686(85)80016-5 · doi:10.1016/0013-4686(85)80016-5 [60] Liu, Optimization method of parameter identification, System Identification and Its Application Volume 1 pp 101– (2010) [61] DOI: 10.1023/A:1022602019183 · doi:10.1023/A:1022602019183 [62] DOI: 10.1109/TSMC.1986.289288 · doi:10.1109/TSMC.1986.289288 [64] DOI: 10.1162/evco.1996.4.2.113 · Zbl 05412777 · doi:10.1162/evco.1996.4.2.113 [65] DOI: 10.1049/ip-cta:20045063 · doi:10.1049/ip-cta:20045063 [66] Haber, Nonlinear System Identification: Input-Output Modeling Approach (1999) · Zbl 0934.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.