×

zbMATH — the first resource for mathematics

Gauge fields and inflation. (English) Zbl 1297.83055
Summary: The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era.

MSC:
83F05 Cosmology
85A40 Cosmology
81T20 Quantum field theory on curved space or space-time backgrounds
85A25 Radiative transfer in astronomy and astrophysics
83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Guth, A. H.; Sato, K.; Linde, A. D., A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Rev. D, Mon. Not. Roy. Astron. Soc., Phys. Lett. B, The inflationary universe, Rep. Progr. Phys., 47, 925-479, (1984)
[2] Mukhanov, V.; Weinbege, S.; Lyth, D.; Liddle, A.; Giovannini, M.; Linde, A. D., Inflationary cosmology, Primordial Density Perturbations, Lecture Notes in Phys., 738, 1-54, (2008), World Scientific Press, arXiv:0705.0164 [hep-th]
[3] A. De Simone, A. Riotto, Cosmological perturbations from the standard model Higgs. arXiv:1208.1344 [hep-ph].
[4] Mazumdar, A.; Rocher, J.; Hotchkiss, S.; Mazumdar, A.; Nadathur, S.; Allahverdi, R.; Ferrantelli, A.; Garcia-Bellido, J.; Mazumdar, A., Non-perturbative production of matter and rapid thermalization after MSSM inflation, Phys. Rept., JCAP, Phys. Rev. D, 83, 123507, (2011), arXiv:1103.2123 [hep-ph]
[5] Golovnev, A.; Mukhanov, V.; Vanchurin, V.; Golovnev, A.; Vanchurin, V.; Golovnev, A., On cosmic inflation in vector field theories, JCAP, Phys. Rev. D, Classical Quantum Gravity, 28, 245018, (2011), arXiv:1109.4838 [gr-qc] · Zbl 1232.83095
[6] Himmetoglu, B.; Contaldi, C. R.; Peloso, M.; Himmetoglu, B.; Contaldi, C. R.; Peloso, M.; Himmetoglu, B.; Contaldi, C. R.; Peloso, M.; Esposito-Farese, G.; Pitrou, C.; Uzan, J. P.; Golovnev, A., Linear perturbations in vector inflation and stability issues, Phys. Rev. Lett., Phys. Rev. D, Phys. Rev. D, Phys. Rev. D, Phys. Rev. D, 81, 023514, (2010), arXiv:0910.0173 [astro-ph.CO]
[7] Wald, R. M., Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D, 28, 2118, (1983) · Zbl 0959.83064
[8] Maleknejad, A.; Sheikh-Jabbari, M. M., Revisiting cosmic no-hair theorem for inflationary settings, Phys. Rev. D, 85, 123508, (2012), arXiv:1203.0219 [hep-th]
[9] D. Baumann, TASI lectures on inflation. arXiv:0907.5424 [hep-th].
[10] Ashoorioon, A.; Sheikh-Jabbari, M. M., Gauged M-flation, its UV sensitivity and spectator species, JCAP, 1106, 014, (2011), arXiv:1101.0048 [hep-th]
[11] Ahmad, I.; Piao, Y.-S.; Qiao, C.-F.; Linde, A. D., Eternal chaotic inflation, JCAP, Modern Phys. Lett. A, 1, 81, (1986), arXiv:0801.3503 [hep-th]
[12] Freese, K.; Frieman, J. A.; Olinto, A. V., Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett., 65, 3233, (1990)
[13] Linde, A. D., Hybrid inflation, Phys. Rev. D, 49, 748, (1994), astro-ph/9307002
[14] Armendariz-Picon, C.; Damour, T.; Mukhanov, V. F., K-inflation, Phys. Lett. B, 458, 209, (1999), hep-th/9904075 · Zbl 0992.83096
[15] Silverstein, E.; Tong, D., Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D, 70, 103505, (2004), hep-th/0310221]
[16] Starobinsky, A. A.; Sasaki, M.; Stewart, E. D.; Sasaki, M.; Tanaka, T.; Wands, D.; Malik, K. A.; Lyth, D. H.; Liddle, A. R.; Lyth, D. H.; Malik, K. A.; Sasaki, M., A general proof of the conservation of the curvature perturbation, JETP Lett., Pisma Zh. Eksp. Teor. Fiz., Progr. Theoret. Phys., Progr. Theoret. Phys., Phys. Rev. D, JCAP, 0505, 004, (2005), astro-ph/0411220 · Zbl 1236.83043
[17] Lue, A.; Wang, L.-M.; Kamionkowski, M., Cosmological signature of new parity violating interactions, Phys. Rev. Lett., 83, 1506, (1999), astro-ph/9812088
[18] Alexander, S. H.-S.; Peskin, M. E.; Sheikh-Jabbari, M. M., Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett., 96, 081301, (2006), hep-th/0403069
[19] Kosowsky, A.; Turner, M. S., CBR anisotropy and the running of the scalar spectral index, Phys. Rev. D, 52, 1739, (1995), astro-ph/9504071
[20] Komatsu, E., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl., 192, 18, (2011), arXiv:1001.4538 [astro-ph.CO]
[21] Babich, D.; Creminelli, P.; Zaldarriaga, M., The shape of non-gaussianities, JCAP, 0408, 009, (2004), astro-ph/0405356
[22] Komatsu, E.; Spergel, D. N., Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D, 63, 063002, (2001), astro-ph/0005036
[23] Kodama, H.; Sasaki, M., Cosmological perturbation theory, Prog. Theor. Phys. Suppl., 78, 1, (1984)
[24] Acquaviva, V.; Bartolo, N.; Matarrese, S.; Riotto, A., Second order cosmological perturbations from inflation, Nuclear Phys. B, 667, 119, (2003), astro-ph/0209156 · Zbl 1038.83046
[25] Maldacena, J. M., Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energy Phys., 0305, 013, (2003)
[26] Creminelli, P.; Nicolis, A.; Senatore, L.; Tegmark, M.; Zaldarriaga, M.; Chen, X.; Huang, M.-x.; Kachru, S.; Shiu, G.; Creminelli, P.; Senatore, L.; Zaldarriaga, M.; Chen, X.; Khoury, J.; Piazza, F.; Langlois, D.; Renaux-Petel, S.; Steer, D. A.; Tanaka, T.; Ashoorioon, A.; Shiu, G., A note on calm excited states of inflation, JCAP, JCAP, JCAP, Adv. Astron., JCAP, Phys. Rev. D, JCAP, 1103, 025, (2011), arXiv:1012.3392 [astro-ph.CO]
[27] Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A., Non-gaussianity from inflation: theory and observations, Phys. Rept., 402, 103, (2004), astro-ph/0406398
[28] Baumann, D., Cmbpol mission concept study: probing inflation with CMB polarization, AIP Conf. Proc., 1141, 10, (2009), arXiv:0811.3919 [astro-ph]
[29] Mukhanov, V. F., Quantum theory of gauge invariant cosmological perturbations, Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., 94N7, 1, (1988)
[30] Sasaki, M., Large scale quantum fluctuations in the inflationary universe, Progr. Theoret. Phys., 76, 1036, (1986)
[31] Lyth, D. H., What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett., 78, 1861, (1997), hep-ph/9606387
[32] D. Baumann, D. Green, A field range bound for general single-field inflation. arXiv:1111.3040 [hep-th].
[33] Easther, R.; McAllister, L., Random matrices and the spectrum of N-flation, JCAP, 0605, 018, (2006), hep-th/0512102
[34] Chen, X.; Huang, M.-x.; Kachru, S.; Shiu, G., Observational signatures and non-gaussianities of general single field inflation, JCAP, 0701, 002, (2007), hep-th/0605045
[35] de Oliveira-Costa, A.; Tegmark, M.; Zaldarriaga, M.; Hamilton, A.; Efstathiou, G., A maximum likelihood analysis of the low CMB multipoles from WMAP, Phys. Rev. D, Mon. Not. Roy. Astron. Soc., 348, 885, (2004), astro-ph/0310207
[36] Copi, C.; Huterer, D.; Schwarz, D.; Starkman, G., The uncorrelated universe: statistical anisotropy and the vanishing angular correlation function in WMAP years 1-3, Phys. Rev. D, 75, 023507, (2007), astro-ph/0605135
[37] Land, K.; Magueijo, J.; Jaffe, T. R.; Banday, A. J.; Eriksen, H. K.; Gorski, K. M.; Hansen, F. K., Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?, Phys. Rev. Lett., Astrophys. J., 629, L1, (2005), astro-ph/0503213
[38] Vielva, P.; Martinez-Gonzalez, E.; Barreiro, R. B.; Sanz, J. L.; Cayon, L., Detection of non-gaussianity in the WMAP 1-year data using spherical wavelets, Astrophys. J., 609, 22, (2004), astro-ph/0310273
[39] Hansen, F. K.; Cabella, P.; Marinucci, D.; Vittorio, N.; Eriksen, H. K.; Hansen, F. K.; Banday, A. J.; Gorski, K. M.; Lilje, P. B.; Eriksen, H. K.; Hansen, F. K.; Banday, A. J.; Gorski, K. M.; Lilje, P. B.; Hansen, F. K.; Banday, A. J.; Gorski, K. M., Testing the cosmological principle of isotropy: local power spectrum estimates of the WMAP data, Astrophys. J., Astrophys. J., Astrophys. J., Mon. Not. Roy. Astron. Soc., 354, 641, (2004), astro-ph/0404206
[40] Groeneboom, N. E.; Eriksen, H. K., Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data, Astrophys. J., 690, 1807, (2009), arXiv:0807.2242 [astro-ph]
[41] Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Larson, D.; Smith, K. M.; Dunkley, J.; Gold, B.; Halpern, M., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies?, Astrophys. J. Suppl., 192, 17, (2011), arXiv:1001.4758 [astro-ph.CO]
[42] Hajian, A.; Souradeep, T., Measuring statistical isotropy of the CMB anisotropy, Astrophys. J., 597, L5, (2003), astro-ph/0308001
[43] Armendariz-Picon, C., Footprints of statistical anisotropies, JCAP, Creating statistically anisotropic and inhomogeneous perturbations, JCAP, 0709, 014, (2007), arXiv:0705.1167 [astro-ph]
[44] A.E. Gumrukcuoglu, C.R. Contaldi, M. Peloso, CMB anomalies from relic anisotropy. astro-ph/0608405.
[45] Ackerman, L.; Carroll, S. M.; Wise, M. B., Imprints of a primordial preferred direction on the microwave background, Phys. Rev. D, 75, 083502, (2007)
[46] Pullen, A. R.; Kamionkowski, M., Cosmic microwave background statistics for a direction-dependent primordial power spectrum, Phys. Rev. D, 76, 103529, (2007), arXiv:0709.1144 [astro-ph]
[47] Armendariz-Picon, C.; Pekowsky, L., Bayesian limits on primordial isotropy breaking, Phys. Rev. Lett., 102, 031301, (2009), arXiv:0807.2687 [astro-ph]
[48] Campanelli, L.; Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L., Cosmic parallax in ellipsoidal universe, Phys. Rev. D, Modern Phys. Lett. A, 26, 1169, (2011), arXiv:1103.6175 [astro-ph.CO] · Zbl 1274.83142
[49] Hanson, D.; Lewis, A., Estimators for CMB statistical anisotropy, Phys. Rev. D, 80, 063004, (2009), arXiv:0908.0963 [astro-ph.CO]
[50] N. Bartolo, E. Dimastrogiovanni, M. Liguori, S. Matarrese, A. Riotto, An estimator for statistical anisotropy from the CMB bispectrum. arXiv:1107.4304 [astro-ph.CO].
[51] Shiraishi, M.; Yokoyama, S., Violation of the rotational invariance in the CMB bispectrum, Progr. Theoret. Phys., 126, 923, (2011), arXiv:1107.0682 [astro-ph.CO] · Zbl 1252.83125
[52] Ashoorioon, A.; Danielsson, U.; Sheikh-Jabbari, M. M., 1/N resolution to inflationary \(\eta\)-problem, Phys. Lett. B, 713, 353, (2012), arXiv:1112.2272 [hep-th]
[53] Turner, M. S.; Widrow, L. M., Inflation produced, large scale magnetic fields, Phys. Rev. D, 37, 2743, (1988)
[54] Ratra, B., Cosmological ‘seed’ magnetic field from inflation, Astrophys. J., 391, L1, (1992)
[55] Yokoyama, S.; Soda, J., Primordial statistical anisotropy generated at the end of inflation, JCAP, 0808, 005, (2008), arXiv:0805.4265 [astro-ph]
[56] Bamba, K.; Yokoyama, J.; Ashoorioon, A.; Mann, R. B.; Bamba, K.; Sasaki, M.; Bamba, K.; Odintsov, S. D., Inflation and late-time cosmic acceleration in non-minimal Maxwell-\(F(R)\) gravity and the generation of large-scale magnetic fields, Phys. Rev. D, Phys. Rev. D, JCAP, JCAP, 0804, 024, (2008), arXiv:0801.0954 [astro-ph]
[57] Martin, J.; Yokoyama, J., Generation of large-scale magnetic fields in single-field inflation, JCAP, 0801, 025, (2008)
[58] K. Dimopoulos, Correlated curvature perturbations and magnetogenesis from the GUT gauge bosons. arXiv:0806.4680 [hep-ph].
[59] Emami, R.; Firouzjahi, H.; Movahed, M. S., Inflation from charged scalar and primordial magnetic fields?, Phys. Rev. D, 81, 083526, (2010), arXiv:0908.4161 [hep-th]
[60] Byrnes, C. T.; Hollenstein, L.; Jain, R. K.; Urban, F. R.; Koivisto, T. S.; Urban, F. R., Three-magnetic fields, JCAP, Phys. Rev. D, 85, 083508, (2012), arXiv:1112.1356 [astro-ph.CO]
[61] Demozzi, V.; Mukhanov, V.; Rubinstein, H., Magnetic fields from inflation?, JCAP, 0908, 025, (2009), arXiv:0907.1030 [astro-ph.CO]
[62] Suyama, T.; Yokoyama, J.’i.; Fujita, T.; Mukohyama, S., Universal upper limit on inflation energy scale from cosmic magnetic field, Phys. Rev. D, JCAP, 1210, 034, (2012), arXiv:1205.5031 [astro-ph.CO]
[63] Kandus, A.; Kunze, K. E.; Tsagas, C. G., Primordial magnetogenesis, Phys. Rept., 505, 1, (2011), arXiv:1007.3891 [astro-ph.CO]
[64] T. Kahniashvili, A. Brandenburg, L. Campanelli, B. Ratra, A.G. Tevzadze, Evolution of inflation-generated magnetic field through phase transitions. arXiv:1206.2428 [astro-ph.CO].
[65] Urban, F. R.; Koivisto, T. K., Perturbations and non-gaussianities in three-form inflationary magnetogenesis, JCAP, 1209, 025, (2012), arXiv:1207.7328 [astro-ph.CO]
[66] Caldwell, R. R.; Motta, L.; Kamionkowski, M., Correlation of inflation-produced magnetic fields with scalar fluctuations, Phys. Rev. D, 84, 123525, (2011), arXiv:1109.4415 [astro-ph.CO]
[67] Lyth, D. H.; Alabidi, L.; Lyth, D., Curvature perturbation from symmetry breaking the end of inflation, JCAP, JCAP, 0608, 006, (2006), astro-ph/0604569
[68] Dimopoulos, K.; Karciauskas, M.; Lyth, D. H.; Rodriguez, Y.; Karciauskas, M.; Dimopoulos, K.; Lyth, D. H.; Valenzuela-Toledo, C. A.; Rodriguez, Y.; Lyth, D. H.; Valenzuela-Toledo, C. A.; Rodriguez, Y., Non-gaussianity from the trispectrum and vector field perturbations, JCAP, Phys. Rev. D, Phys. Rev. D, Phys. Lett. B, 685, 120, (2010), arXiv:0910.4208 [astro-ph.CO]
[69] Non-Gaussianity and statistical anisotropy from vector field populated inflationary models. arXiv:1001.4049 [astro-ph.CO].; M. Karciauskas, The primordial curvature perturbation from vector fields of general non-Abelian groups. arXiv:1104.3629 [astro-ph.CO].
[70] K. Dimopoulos, Statistical anisotropy and the vector curvaton paradigm. arXiv:1107.2779 [hep-ph].; K. Dimopoulos, D. Wills, I. Zavala, Statistical anisotropy from vector curvaton in D-brane inflation. arXiv:1108.4424 [hep-th].
[71] J.P. Beltran Almeida, Y. Rodriguez, C.A. Valenzuela-Toledo, The Suyama-Yamaguchi consistency relation in the presence of vector fields. arXiv:1112.6149 [astro-ph.CO].
[72] Emami, R.; Firouzjahi, H., Issues on generating primordial anisotropies at the end of inflation, JCAP, 1201, 022, (2012), arXiv:1111.1919 [astro-ph.CO]
[73] Dimopoulos, K.; Karciauskas, M., Parity violating statistical anisotropy, J. High Energy Phys., 1206, 040, (2012), arXiv:1203.0230 [hep-ph]
[74] D.H. Lyth, M. Karciauskas, Statistically anisotropic curvature perturbation generated during the waterfall. arXiv:1204.6619 [astro-ph.CO].; Modulation of the waterfall by a gauge field. arXiv:1209.4266 [astro-ph.CO].
[75] Dey, A.; Paban, S., Non-gaussianities in the cosmological perturbation spectrum due to primordial anisotropy II, JCAP, JCAP, 1210, 055, (2012), arXiv:1205.2758 [astro-ph.CO]
[76] R.K. Jain, M.S. Sloth, On the non-Gaussian correlation of the primordial curvature perturbation with vector fields. arXiv:1210.3461 [astro-ph.CO].
[77] Barnaby, N.; Peloso, M., Large nongaussianity in axion inflation, Phys. Rev. Lett., 106, 181301, (2011), arXiv:1011.1500 [hep-ph]
[78] Barnaby, N.; Namba, R.; Peloso, M., Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity, JCAP, 1104, 009, (2011), arXiv:1102.4333 [astro-ph.CO]
[79] Anber, M. M.; Sorbo, L., Non-gaussianities and chiral gravitational waves in natural steep inflation, Phys. Rev. D, 85, 123537, (2012), arXiv:1203.5849 [astro-ph.CO]
[80] Barnaby, N.; Namba, R.; Peloso, M., Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis, Phys. Rev. D, 85, 123523, (2012), arXiv:1202.1469 [astro-ph.CO]
[81] Namba, R., Curvature perturbations from a massive vector curvaton, Phys. Rev. D, 86, 083518, (2012), arXiv:1207.5547 [astro-ph.CO]
[82] Sorbo, L.; Cook, J. L.; Sorbo, L.; Cook, J. L.; Sorbo, L., Particle production during inflation and gravitational waves detectable by ground-based interferometers, JCAP, Phys. Rev. D, Phys. Rev. D, 86, 069901, (2012), (erratum). arXiv:1109.0022 [astro-ph.CO]
[83] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu, P. Zhou, Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton. arXiv:1206.6117 [astro-ph.CO].
[84] Alexander, S.; Martin, J.; Contaldi, C. R.; Magueijo, J.; Smolin, L., Anomalous CMB polarization and gravitational chirality, Phys. Rev. D, Phys. Rev. Lett., 101, 141101, (2008), arXiv:0806.3082 [astro-ph]
[85] Satoh, M.; Kanno, S.; Soda, J.; Takahashi, T.; Soda, J., Chiral primordial gravitational waves from a Lifshitz point, Phys. Rev. D, Phys. Rev. Lett., 102, 231301, (2009), arXiv:0904.0554 [hep-th]
[86] Saito, S.; Ichiki, K.; Taruya, A., Probing polarization states of primordial gravitational waves with CMB anisotropies, JCAP, 0709, 002, (2007), arXiv:0705.3701 [astro-ph]
[87] Soda, J.; Kodama, H.; Nozawa, M., Parity violation in graviton non-gaussianity, J. High Energy Phys., 1108, 067, (2011), arXiv:1106.3228 [hep-th] · Zbl 1298.81496
[88] Shiraishi, M.; Nitta, D.; Yokoyama, S., Parity violation of gravitons in the CMB bispectrum, Progr. Theoret. Phys., 126, 937, (2011), arXiv:1108.0175 [astro-ph.CO] · Zbl 1242.83045
[89] Gibbons, G. W.; Hawking, S. W.; Hawking, S. W.; Moss, I. G.; Moss, I.; Sahni, V., Anisotropy in the chaotic inflationary universe, Phys. Rev. D, Phys. Lett. B, Phys. Lett. B, 178, 159, (1986)
[90] Kitada, Y.; Maeda, K.-i.; Kitada, Y.; Maeda, K.-i., Cosmic no hair theorem in homogeneous space-times. 1. Bianchi models, Phys. Rev. D, Classical Quantum Gravity, 10, 703, (1993) · Zbl 0774.53049
[91] Ford, L. H., Inflation driven by a vector field, Phys. Rev. D, 40, 967, (1989)
[92] Kaloper, N.; Barrow, J. D.; Hervik, S.; Barrow, J. D.; Hervik, S., Simple types of anisotropic inflation, Phys. Rev. D, Phys. Rev. D, Phys. Rev. D, 81, 023513, (2010), arXiv:0911.3805 [gr-qc]
[93] Kanno, S.; Kimura, M.; Soda, J.; Yokoyama, S., Anisotropic inflation from vector impurity, JCAP, 0808, 034, (2008)
[94] Watanabe, M.a.; Kanno, S.; Soda, J., Inflationary universe with anisotropic hair, Phys. Rev. Lett., 102, 191302, (2009), arXiv:0902.2833 [hep-th]
[95] Soda, J., Statistical anisotropy from anisotropic inflation, Classical Quantum Gravity, 29, 083001, (2012), arXiv:1201.6434 [hep-th] · Zbl 1241.83006
[96] Kanno, S.; Soda, J., Lorentz violating inflation, Phys. Rev. D, 74, 063505, (2006), hep-th/0604192
[97] J. Soda, S. Kanno, Impact of Lorentz violation on cosmology. gr-qc/0612069.
[98] Emami, R.; Firouzjahi, H.; Sadegh Movahed, S. M.; Zarei, M.; Do, T. Q.; Kao, W. F.; Lin, I.-C., Anisotropic power-law inflation for a two scalar fields model, JCAP, Phys. Rev. D, 83, 123002, (2011), arXiv:1010.5495 [astro-ph.CO]
[99] Wagstaff, J. M.; Dimopoulos, K.; Dimopoulos, K.; Lazarides, G.; Wagstaff, J. M., Eliminating the \(\eta\)-problem in SUGRA hybrid inflation with vector backreaction, Phys. Rev. D, JCAP, 1202, 018, (2012), arXiv:1111.1929 [astro-ph.CO]
[100] S. Bhowmick, S. Mukherji, Anisotropic power law inflation from rolling tachyons. arXiv:1105.4455 [hep-th].
[101] Dimopoulos, K.; Dimopoulos, K.; Karciauskas, M.; Wagstaff, J. M.; Dimopoulos, K.; Karciauskas, M.; Wagstaff, J. M., Vector curvaton without instabilities, Phys. Rev. D, Phys. Rev. D, Phys. Lett. B, 683, 298, (2010), arXiv:0909.0475 [hep-ph]
[102] Murata, K.; Soda, J., Anisotropic inflation with non-abelian gauge kinetic function, JCAP, 1106, 037, (2011), arXiv:1103.6164 [hep-th]
[103] Hervik, S.; Mota, D. F.; Thorsrud, M.; Thorsrud, M.; Mota, D. F.; Hervik, S., Cosmology of a scalar field coupled to matter and an isotropy-violating Maxwell field, J. High Energy Phys., J. High Energy Phys., 1210, 066, (2012), arXiv:1205.6261 [hep-th]
[104] Germani, C.; Kehagias, A.; De Felice, A.; Karwan, K.; Wongjun, P., Stability of the 3-form field during inflation, JCAP, JCAP, Phys. Rev. D, 85, 123545, (2012), arXiv:1202.0896 [hep-ph]
[105] Kanno, S.; Soda, J.; Watanabe, M.a., Anisotropic power-law inflation, JCAP, 1012, 024, (2010), arXiv:1010.5307 [hep-th]
[106] Yamamoto, K.; Watanabe, M.-a.; Soda, J., Inflation with multi-vector-hair: the fate of anisotropy, Classical Quantum Gravity, 29, 145008, (2012), arXiv:1201.5309 [hep-th] · Zbl 1246.83278
[107] Yamamoto, K., Primordial fluctuations from inflation with a triad of background gauge fields, Phys. Rev. D, 85, 123504, (2012), arXiv:1203.1071 [astro-ph.CO]
[108] MacCallum, M. A.H., A class of homogeneous cosmological models, Comm. Math. Phys., 12, 108, (1969) · Zbl 0177.57601
[109] (Wainwright, J.; Ellis, G. F.R., Dynamical Systems in Cosmology, (1997), Cambridge University Press) · Zbl 1072.83002
[110] Padmanabhan, T., Gravitation: foundations and frontiers, (2010), Cambridge Univ. Pr. Cambridge, UK · Zbl 1187.83002
[111] K.-i. Maeda, K. Yamamoto, Inflationary dynamics with a non-Abelian gauge field. arXiv:1210.4054 [astro-ph.CO].
[112] Kanno, S.; Soda, J.; Watanabe, M.a., Cosmological magnetic fields from inflation and backreaction, JCAP, 0912, 009, (2009), arXiv:0908.3509 [astro-ph.CO]
[113] Tomita, K.; Den, M.; Noh, H.; Hwang, J. C.; Dunsby, P. K.S.; Pereira, T. S.; Pitrou, C.; Uzan, J.-P.; Gumrukcuoglu, A. E.; Contaldi, C. R.; Peloso, M.; Gumrukcuoglu, A. E.; Kofman, L.; Peloso, M.; Pitrou, C.; Pereira, T. S.; Uzan, J. P., Predictions from an anisotropic inflationary era, Phys. Rev. D, Phys. Rev. D, Phys. Rev. D, JCAP, JCAP, Phys. Rev. D, JCAP, 0804, 004, (2008), arXiv:0801.3596 [astro-ph]
[114] Revisiting the spectrum of a scalar field in an anisotropic universe. arXiv:1211.1132 [gr-qc].
[115] Himmetoglu, B.; Dulaney, T. R.; Gresham, M. I., Primordial power spectra from anisotropic inflation, JCAP, Phys. Rev. D, 81, 103532, (2010), arXiv:1001.2301 [astro-ph.CO]
[116] Gumrukcuoglu, A. E.; Himmetoglu, B.; Peloso, M., Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation, Phys. Rev. D, 81, 063528, (2010), arXiv:1001.4088 [astro-ph.CO]
[117] Watanabe, M.a.; Kanno, S.; Soda, J., The nature of primordial fluctuations from anisotropic inflation, Prog. Theor. Phys., 123, 1041, (2010), arXiv:1003.0056 [astro-ph.CO] · Zbl 1197.83133
[118] Watanabe, M.a.; Kanno, S.; Soda, J., Imprints of anisotropic inflation on the cosmic microwave background, Mon. Not. Roy. Astron. Soc., 412, L83, (2011), arXiv:1011.3604 [astro-ph.CO]
[119] Libanov, M.; Rubakov, V., Cosmological density perturbations from conformal scalar field: infrared properties and statistical anisotropy, JCAP, 1011, 045, (2010), arXiv:1007.4949 [hep-th]
[120] N. Bartolo, S. Matarrese, M. Peloso, A. Ricciardone, The anisotropic power spectrum and bispectrum in the \(f(\phi) F^2\) mechanism. arXiv:1210.3257 [astro-ph.CO].
[121] A. Maleknejad, M.M. Sheikh-Jabbari, Gauge-flation: inflation from non-Abelian gauge fields. arXiv:1102.1513 [hep-ph]. · Zbl 1311.70035
[122] Maleknejad, A.; Sheikh-Jabbari, M. M., Non-abelian gauge field inflation, Phys. Rev. D, 84, 043515, (2011), arXiv:1102.1932 [hep-ph]
[123] Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J., Gauge-flation and cosmic no-hair conjecture, JCAP, 1201, 016, (2012), arXiv:1109.5573 [hep-th]
[124] Cervero, J.; Jacobs, L.; Henneaux, M.; Moniz, P. V.; Mourao, J. M.; Sa, P. M., The dynamics of a flat Friedmann-Robertson-Walker inflationary model in the presence of gauge fields, Phys. Lett. B, J. Math. Phys., Classical Quantum Gravity, 10, 517, (1993)
[125] D.V. Gal’tsov, Non-Abelian condensates as alternative for dark energy. arXiv:0901.0115 [gr-qc].
[126] Bento, M. C.; Bertolami, O.; Moniz, P. V.; Mourao, J. M.; Sa, P. M.; Armendariz-Picon, C.; Yamamoto, K., Primordial fluctuations from inflation with a triad of background gauge fields, Classical Quantum Gravity, JCAP, Phys. Rev. D, 85, 123504, (2012), arXiv:1203.1071 [astro-ph.CO]
[127] Yang-Mills condensates in cosmology. arXiv:1112.2943 [hep-th]. · Zbl 1228.83130
[128] E. Elizalde, A.J. Lopez-Revelles, S.D. Odintsov, S.Y. Vernov, Cosmological models with Yang-Mills fields. arXiv:1201.4302 [hep-th].
[129] Dicus, D. A.; Kao, C.; Repko, W. W., Effective Lagrangians and low-energy photon-photon scattering, Phys. Rev. D, 57, 2443, (1998), hep-ph/9709415
[130] Weinberg, S., The quantum theory of fields. vol. 2: modern applications, 489, (1996), Univ. Pr Cambridge, UK · Zbl 0885.00020
[131] Sheikh-Jabbari, M. M., Gauge-flation Vs chromo-natural inflation, Phys. Lett. B, 717, 6, (2012), arXiv:1203.2265 [hep-th]
[132] P. Adshead, M. Wyman, Gauge-flation trajectories in chromo-natural inflation. arXiv:1203.2264 [hep-th].
[133] Green, S. R.; Martinec, E. J.; Quigley, C.; Sethi, S., Constraints on string cosmology, Classical Quantum Gravity, 29, 075006, (2012), arXiv:1110.0545 [hep-th] · Zbl 1241.83081
[134] Ghalee, A., A new perspective on gauge-flation, Phys. Lett. B, 717, 307, (2012), arXiv:1206.1650 [gr-qc]
[135] Greene, P. B.; Kofman, L.; Linde, A. D.; Starobinsky, A. A., Structure of resonance in preheating after inflation, Phys. Rev. D, 56, 6175, (1997), hep-ph/9705347
[136] Hu, W.; Sawicki, I., A parameterized post-Friedmann framework for modified gravity, Phys. Rev. D, 76, 104043, (2007), arXiv:0708.1190 [astro-ph]
[137] P. Adshead, E. Martinec, M. Wyman, A sinister universe: chiral gravitons Lurking, and Lyth un-bound. arXiv:1301.2598 [hep-th].
[138] Chow, N.; Khoury, J.; Burrage, C.; de Rham, C.; Seery, D.; Tolley, A. J.; Nesseris, S.; De Felice, A.; Tsujikawa, S.; De Felice, A.; Kase, R.; Tsujikawa, S., Matter perturbations in galileon cosmology, Phys. Rev. D, JCAP, Phys. Rev. D, Phys. Rev. D, 83, 043515, (2011), arXiv:1011.6132 [astro-ph.CO]
[139] Freese, K.; Frieman, J. A.; Olinto, A. V., Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett., 65, 3233, (1990)
[140] Adshead, P.; Wyman, M., Chromo-natural inflation, Phys. Rev. Lett., 108, 261302, (2012)
[141] Anber, M. M.; Sorbo, L., Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D, 81, 043534, (2010), arXiv:0908.4089 [hep-th]
[142] A. Maleknejad, M. Zarei, Slow-roll trajectories in chromo-natural and gauge-flation models, an exhaustive analysis. arXiv:1212.6760 [hep-th].
[143] Gibbons, G. W.; Steif, A. R., Yang-Mills cosmologies and collapsing gravitational sphalerons, Phys. Lett. B, 320, 245, (1994), hep-th/9311098
[144] S. Alexander, A. Marciano, D. Spergel, Chern-Simons inflation and baryogenesis. arXiv:1107.0318 [hep-th].
[145] M. Noorbala, M.M. Sheikh-Jabbari, Inflato-natural leptogenesis: leptogenesis in chromo-natural inflation and gauge-flation. arXiv:1208.2807 [hep-th].
[146] Peskin, M. E.; Schroeder, D. V., An introduction to quantum field theory, (1995), Addison-Wesley Reading, USA
[147] E. Dimastrogiovanni, M. Fasiello, A.J. Tolley, Low-energy effective field theory for chromo-natural inflation. arXiv:1211.1396 [hep-th].
[148] A. Maleknejad, M.M. Sheikh-Jabbari, J. Soda, Chromo-natural cosmic perturbation theory, a thorough analysis (in preparation).
[149] E. Dimastrogiovanni, M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound. arXiv:1212.5184 [astro-ph.CO].
[150] E. Martinec, P. Adshead, M. Wyman, Chern-Simons EM-flation. arXiv:1206.2889 [hep-th].
[151] Groen, O.; Hervik, S., Einstein’s general theory of relativity: with modern applications in cosmology, 538, (2007), Springer New York, USA · Zbl 1126.83001
[152] H.-J. Schmidt, Lectures on mathematical cosmology. gr-qc/0407095.
[153] Stephani, H.; Kramer, D.; MacCallum, M. A.H.; Hoenselaers, C.; Herlt, E., Exact solutions of einstein’s field equations, 701, (2003), Univ. Pr Cambridge, UK · Zbl 1057.83004
[154] Ellis, G. F.R.; MacCallum, M. A.H., A class of homogeneous cosmological models, Comm. Math. Phys., 12, 108, (1969) · Zbl 0177.57601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.