×

zbMATH — the first resource for mathematics

Numerical study of a single drop impact onto a liquid film up to the consequent formation of a crown. (English. Russian original) Zbl 1297.76175
J. Appl. Mech. Tech. Phys. 54, No. 5, 720-728 (2013); translation from Prikl. Mekh. Tekh. Fiz. 54, No. 5, 38-47 (2013).
Summary: In this paper, the whole dynamic process of a single drop impact onto a thin liquid surface up to the consequent formation of a thin crown is numerically studied using the smoothed particle hydrodynamics (SPH) method. Especially, the gravity, artificial viscosity, and surface tension are introduced into the model. The obtained SPH numerical results are compared with experimental results. The numerical model of the SPH method is valid for simulating the dynamic process of a single drop impact onto a liquid surface. Meanwhile, it is found that the whole dynamic process mainly depends on the depth of the liquid pool and the initial velocity of the droplet.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76A20 Thin fluid films
76M28 Particle methods and lattice-gas methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. M. Worthington, ”Impact with a Liquid Surface, Studied by the Aid of Instantaneous Photography,” Philos. Trans. Roy. Soc. London, Ser. A 189, 137–148 (1897). · JFM 28.0736.06
[2] M. Rein, ”Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces,” Fluid Dyn. Res. 12, 61–93 (1993).
[3] J. Fukai, Z. Zhao, and D. Poulikakos, ”Modeling of the Deformation of a Liquid Droplet Impinging upon a Fat Surface,” Phys. Fluids, A 5, 2588–2599 (1993). · Zbl 0807.76022
[4] B. S. Kang and D. H. Lee, ”On the Dynamic Behavior of a Liquid Droplet Impacting upon an Inclined Heated Surface,” Exp. Fluids 29, 380–387 (2000).
[5] H. Y. Kim and J. M. Chunm, ”Recoiling of Liquid Droplets upon Collision with Solid Surfaces,” Phys. Fluids 13, 643–659 (2001). · Zbl 1184.76283
[6] S. Sikalo, M. Marengo, C. Tropea, and E. N. Ganic, ”Analysis of Impact of Droplets on Horizontal Surfaces,” Exp. Thermal Fluid Sci. 25, 503–510 (2002).
[7] J. Fukai, Y. Shiiba, and Y. Yamamoto, ”Wetting Effects on the Spreading of a Liquid Droplet Colliding with a Flat Surface: Experiment and Modeling,” Phys. Fluids 7, 236–247 (1995).
[8] M. Bussmann, S. Chandra, and D. J. Mostaghimi, ”Modeling the Splash of a Droplet Impacting a Solid Surface,” Phys. Fluids 12, 3121–3132 (2000). · Zbl 1184.76077
[9] A. L. Yarin and D. A. Weiss, ”Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity,” J. Fluid Mech. 283, 141–173 (1995).
[10] M. J. Rein, ”The Transition Regime between Coalescing and Splashing Drops,” J. Fluid Mech. 306, 145–165 (1996).
[11] A. B. Wang and C. C. Chen, ”Splashing Impact of a Single Drop onto Very thin Liquid Films,” Phys. Fluids 12, 2155–2158 (2000). · Zbl 1184.76582
[12] F. Rodriguez and R. J. Mesler, ”Some Drops don’t Splash,” J. Colloid Interface Sci. 106, 347–352 (1985).
[13] S. L. Manzello and J. C. Yang, ”An Experimental Study of a Water Droplet Impinging on a Liquid Surface,” Exp. Fluids 32, 580–589 (2000).
[14] J. J. Monaghan, ”Simulating Free Surface Flows with SPH,” J. Comput. Phys. 110, 399–406 (1994). · Zbl 0794.76073
[15] R. A. Gingold and J. J. Monaghan, ”Smoothed Particle Hydrodynamics Theory and Application to Non-Spherical Stars,” Mon. Notic. Roy. Astron. Soc. 181, 375–389 (1977). · Zbl 0421.76032
[16] M. Anghileri, L. M. L. Castelletti, E. Francesconi, et al. ”Rigid Body Water Impact-Experimental Tests and Numerical Simulations using the SPH Method,” Int. J. Impact Eng. 38, 141–151 (2011).
[17] R. A. Dalrymple and B. D. Rogers, ”Numerical Modeling of Water Waves with the SPH Method,” Coastal Eng. 53(23), 141–147 (2006).
[18] J. Fang, P. Aurele, R. Martin, and A. Christophe, ”Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids,” Appl. Numer. Math. 59(2), 251–271 (2009). · Zbl 1194.76202
[19] J. J. Monaghan, ”A Turbulence Model for Smoothed Particle Hydrodynamics,” Eur. J. Mech., B: Fluids 30, 360–370 (2011). · Zbl 1258.76124
[20] J. R. Shao, H. Q. Li, G. R. Liu, and M. B. Liu, ”An Improved SPH Method for Modeling Liquid Sloshing Dynamics,” Comput. Structures 100, 18–26 (2012).
[21] G. R. Liu, ”Smoothed Particle Hydrodynamics: A Meshfree Particle Method,” Ed. by G. R. Liu and M. B. Liu (World Sci. Publ., River Edge-London, 2003). · Zbl 1046.76001
[22] S. Shao and E. Y. M. Lo, ”Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows with a Free Surface,” Adv. Water Res. 26(7), 787–800 (2003).
[23] A. Colagrossi and M. Landrini, ”Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics,” J. Comput. Phys. 191(2), 448–475 (2003). · Zbl 1028.76039
[24] J. P. Morris, ”Simulating Surface Tension with Smoothed Particle Hydrodynamics,” Int. J. Numer. Methods Fluids 33, 333–353 (2000). · Zbl 0985.76072
[25] R. Ata and A. Soulaimani, ”A Stabilized SPH Method for Inviscid Shallow Water Flows,” Int. J. Numer. Methods Fluids 47, 139–159 (2005). · Zbl 1065.76162
[26] R. Panciroli, S. Abrate, G. Minak, and A. Zucchelli, ”Hydroelasticity in Water-Entry Problems: Comparison between Experimental and SPH Results,” Composite Structures 94, 532–539 (2012).
[27] J. J. Monaghan, ”Smoothed Particle Hydrodynamics,” Annu. Rev. Astron. Astrophys. 30, 543–574 (1992).
[28] J. J. Monaghan, ”On the Problem of Penetration in Particle Methods,” J. Comput. Phys. 82(1), 1–15 (1989). · Zbl 0665.76124
[29] D. A. Weiss and A. L. Yarin, ”Single Drop Impact onto Liquid Films: Neck Distortion, Jetting, Tiny Bubble Entrainment, and Crown Formation,” J. Fluid Mech. 385, 229–254 (1999). · Zbl 0931.76011
[30] J. K. Chen and J. E. Beraun, ”A Generalized Smoothed Particle Hydrodynamics Method for Nonlinear Dynamic Problems,” Comput. Methods Appl. Mech. Eng. 190, 225–239 (2000). · Zbl 0967.76077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.