×

Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair. (English) Zbl 1297.76107

Summary: A new nonlinear Petrov-Galerkin approach has been developed for proper orthogonal decomposition (POD) reduced order modelling (ROM) of the Navier-Stokes equations. The new method is based on the use of the cosine rule between the advection direction in Cartesian space-time and the direction of the gradient of the solution. A finite element pair, \(P_{1 DG} P_2\), which has good balance preserving properties is used here, consisting of a mix of discontinuous (for velocity components) and continuous (for pressure) basis functions. The contribution of the present paper lies in applying this new non-linear Petrov-Galerkin method to the reduced order Navier-Stokes equations, and thus improving the stability of ROM results without tuning parameters. The results of numerical tests are presented for a wind driven 2D gyre and the flow past a cylinder, which are simulated using the unstructured mesh finite element CFD model in order to illustrate the numerical performance of the method. The numerical results obtained show that the newly proposed POD Petrov-Galerkin method can provide more accurate and stable results than the POD Bubnov-Galerkin method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pearson, K., On lines and planes of closest fit to systems of points in space, Philos. Mag., 2, 559-572 (1901) · JFM 32.0710.04
[2] Kosambi, D. D., Statistics in function space, J. Indian Math. Soc., 7, 76-88 (1943) · Zbl 0063.03317
[3] Fukunaga, K., Introduction to Statistical Recognition. Introduction to Statistical Recognition, Computer Science and Scientific Computing Series (1990), Academic Press: Academic Press Boston, MA · Zbl 0711.62052
[4] Jolliffe, I. T., Principal Component Analysis (2002), Springer · Zbl 1011.62064
[5] Crommelin, D. T.; Majda, A. J., Strategies for model reduction: comparing different optimal bases, J. Atmos. Sci., 61, 2206-2217 (2004)
[6] Aubry, N.; Holmes, P.; Lumley, J. L., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Dynam., 192, 115-173 (1998) · Zbl 0643.76066
[7] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 492-515 (2003) · Zbl 1075.65118
[8] Luo, Z.; Zhu, J.; Wang, R.; Navon, I. M., Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical pacific ocean reduced gravity model, Comput. Methods Appl. Mech. Engrg., 196, 4184-4195 (2007) · Zbl 1173.76348
[9] Lumley, J. L., The structure of inhomogeneous turbulence, Atmos. Turbul. Wave Propag., 166-178 (1967)
[10] Aubry, N.; Holmes, P.; Lumley, J. L., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Dynam., 192, 115-173 (1988) · Zbl 0643.76066
[11] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition, AIAA J., 40, 2323-2330 (2002)
[12] Banks, H. T.; Joyner, M. L.; Wincheski, B.; Winfree, W. P., Nondestructive evaluation using a reduced-order computational methodology, Inverse Probl., 16, 929-945 (2000) · Zbl 0960.35107
[13] Hopcroftand, P. O.; Gallagher, K.; Pain, C. C.; Fang, F., Three-dimensional simulation and inversion of borehole temperatures for reconstructing past climate in complex settings, J. Geophys. Res., 114 (2009)
[14] Robert, C.; Durbiano, S.; Blayo, E.; Verron, J.; Blum, J.; Dimet, F. X.L., A reduced-order strategy for 4D-Var data assimilation, J. Marine Syst., 57, 70-82 (2005)
[15] Cao, Y.; Zhu, J.; Navon, I. M.; Luo, Z., A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition, Int. J. Numer. Methods Fluids, 53, 1571-1583 (2007) · Zbl 1370.86002
[16] Hoteit, I.; Kohl, A., Efficiency of reduced-order, time-dependent adjoint data assimilation approaches, J. Oceanogr., 62, 539-550 (2006)
[17] Fang, F.; Pain, C. C.; Navon, I. M.; Piggott, M. D.; Gorman, G. J.; Allison, P.; Goddard, A. J.H., Reduced order modelling of an adaptive mesh ocean model, Int. J. Numer. Methods Fluids, 59, 827-851 (2009) · Zbl 1155.86004
[18] Franca, L. P.; Frey, S., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99, 209-233 (1992) · Zbl 0765.76048
[19] Kalashnikova, I.; Barone, M. F., On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment, Int. J. Numer. Methods Engrg., 00, 1-28 (2009)
[20] Iollo, A.; Lanteri, S.; Desideri, J. A., Stability properties of POD/Galerkin approximations for the compressible Navier-Stokes equations, Theor. Comput. Fluid Dynam., 13, 377-396 (2000) · Zbl 0987.76077
[21] Iollo, A.; Dervieux, A.; Desideri, J. A.; Lanteri, S., Two stable POD-based approximations to the Navier-Stokes equations, Comput. Visual. Sci., 3, 61-66 (2000) · Zbl 1008.76076
[22] Sabetghadam, F.; Jafarpour, A., \( \alpha\) regularization of the POD-Galerkin dynamical systems of the Kuramoto-Sivashinsky equation, Appl. Math. Comput., 218, 6012-6026 (2012) · Zbl 1246.65180
[23] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[24] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C.R. Acad. Sci. Paris Ser., 339, 667-672 (2004) · Zbl 1061.65118
[27] Chaturantabut, S.; Sorensen, D. C., Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Math. Comput. Model. Dynam. Syst., 17, 337-353 (2011) · Zbl 1302.76127
[28] Chaturantabut, S.; Sorensen, D. C., A state space error estimate for POD-DEIM nonlinear model reduction, SIAM J. Numer. Anal., 50, 46-63 (2012) · Zbl 1237.93035
[29] Nguyen, N. C.; Patera, A. T.; Peraire, J., A best points interpolation method for efficient approximation of parametrized functions, Int. J. Numer. Methods Engrg., 73, 521-543 (2008) · Zbl 1163.65009
[30] Nguyen, N. C.; Peraire, J., An efficient reduced-order modeling approach for non-linear parametrized partial differential equations, Int. J. Numer. Methods Engrg., 76, 27-55 (2008) · Zbl 1162.65407
[31] Grepl, M. A.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, Math. Model. Numer. Anal., 41, 575-605 (2007) · Zbl 1142.65078
[32] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Engrg., 86, 155-181 (2011) · Zbl 1235.74351
[33] Chu, Y.; Serpas, M.; Hahn, J., State-preserving nonlinear model reduction procedure, Chem. Eng. Sci., 66, 3907-3913 (2011)
[34] Fang, F.; Pain, C.; Navon, I. M.; Elsheikh, A. H.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[35] Cotter, C. J.; Ham, D. A.; Pain, C. C., A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Model., 26, 86-90 (2009)
[36] Cotter, C. J.; Ham, D. A., Numerical wave propagation for the triangular \(P_{1 DG} P_2\) finite element pair, J. Comput. Phys., 230, 2806-2820 (2011) · Zbl 1316.76019
[37] Pain, C. C.; Umpleby, A. P.; de Oliveira, C. R.E.; Goddard, A. J.H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng., 190, 3771-3796 (2001) · Zbl 1008.76041
[38] Cotter, C. J.; Ham, D. A.; Pain, C. C.; Reich, S., LBB stability of a mixed Galerkin finite element pair for fluid flow simulations, J. Comput. Phys., 228, 336-348 (2009) · Zbl 1409.76058
[40] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[41] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[42] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[43] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 325-342 (1993) · Zbl 0844.76048
[44] Pain, C. C.; Eaton, M. D.; Smedley-Stevenson, R. P., Space-time streamline upwind Petrov-Galerkin methods for the Boltzmann transport equation, Comput. Methods Appl. Mech. Engrg., 195, 4334-4357 (2006) · Zbl 1175.76093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.