×

zbMATH — the first resource for mathematics

The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. (English) Zbl 1297.76073
Summary: The formation and amplification of streamwise velocity perturbations induced by cross-stream disturbances is ubiquitous in shear flows. This disturbance growth mechanism, so neatly identified by T. Ellingsen and E. Palm [Phys. Fluids 18, 487–488 (1975; Zbl 0308.76030)], is a key process in transition to turbulence and self-sustained turbulence. In this review, we first present the original derivation and early studies and then discuss the non-modal growth of streaks, the result of the lift-up process, in transitional and turbulent shear flows. In the second part, the effects on the lift-up process of additives in the fluid and of a second phase are discussed and new results presented with emphasis on particle-laden shear flows. For all cases considered, we see the lift-up process to be a very robust process, always present as a first step in subcritical transition.

MSC:
76F10 Shear flows and turbulence
76A15 Liquid crystals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ellingsen, T.; Palm, E., Stability of linear flow, Phys. Fluids, 18, 487-488, (1975) · Zbl 0308.76030
[2] Drazin, P.; Reid, W., Hydrodynamic stability, (1981), Cambridge Univ. Press · Zbl 0449.76027
[3] Rayleigh, L., On the stability of certain fluid motions, Proc. Math. Soc. Lond., 11, 57-70, (1880) · JFM 12.0711.02
[4] Fjørtoft, R., Applications of integral theorems in deriving criteria for instability for laminar flows and for the baroclinic circular vortex, Geofys. Publ., Oslo, 17, 6, 1-52, (1950)
[5] Howard, L., Note on a paper of John W. miles, J. Fluid Mech., 10, 509-512, (1961) · Zbl 0104.20704
[6] Hof, B.; van Doorne, C. W.H.; Westerweel, J.; Nieuwstadt, F. T.M.; Faisst, H.; Eckhardt, B.; Wedin, H.; Kerswell, R.; Waleffe, F., An experimental observation of travelling waves in pipe flow, Science, 305, 5690, 1594-1598, (2004)
[7] Schmid, P. J.; Henningson, D. S., Stability and transition in shear flows, (2001), Springer New York · Zbl 0966.76003
[8] Reddy, S. C.; Schmid, P. J.; Baggett, J. S.; Henningson, D. S., On stability of streamwise streaks and transition thresholds in plane channel flows, J. Fluid Mech., 365, 269-303, (1998) · Zbl 0927.76029
[9] Andersson, P.; Brandt, L.; Bottaro, A.; Henningson, D. S., On the breakdown of boundary layers streaks, J. Fluid Mech., 428, 29-60, (2001) · Zbl 0983.76025
[10] Brandt, L.; Cossu, C.; Chomaz, J.-M.; Huerre, P.; Henningson, D. S., On the convectively unstable nature of optimal streaks in boundary layers, J. Fluid Mech., 485, 221-242, (2003) · Zbl 1055.76019
[11] Eckhardt, B.; Schneider, T. M.; Hof, B.; Westerweel, J., Turbulence transition in pipe flow, Annu. Rev. Fluid Mech., 39, 447-468, (2007) · Zbl 1296.76062
[12] Mullin, T., Experimental studies of transition to turbulence in a pipe, Annu. Rev. Fluid Mech., 43, 1-24, (2011), Volume publication date January 2011 · Zbl 1210.76005
[13] Moffatt, H. K., (Yaglom, A. M.; Tatarsky, V. I., Proceedings International Colloquium on Atmospheric Turbulence and Radio Wave Propagation, (1967), Nauka Moscow), 166-188
[14] Phillips, O. M., Shear-flow turbulence, Annu. Rev. Fluid Mech., 1, 245-264, (1969)
[15] Landahl, M. T., Wave breakdown and turbulence, SIAM J. Appl. Math., 28, 735-756, (1975) · Zbl 0276.76023
[16] Lundell, F.; Alfredsson, P. H., Streamwise scaling of streaks in laminar boundary layers subjected to free-stream turbulence, Phys. Fluids, 16, 5, 1814-1817, (2004) · Zbl 1186.76340
[17] Landahl, M. T., A note on an algebraic instability of inviscid parallel shear flows, J. Fluid Mech., 98, 243-251, (1980) · Zbl 0428.76049
[18] A. Lundbladh, 1993. Simulation of bypass transition to turbulence in wall bounded shear flows. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
[19] Hultgren, L. S.; Gustavsson, L. H., Algebraic growth of disturbances in a laminar boundary layer, Phys. Fluids, 24, 1000-1004, (1981) · Zbl 0466.76030
[20] Schmid, P. J.; Brandt, L., Analysis of fluid systems: stability, receptivity, sensitivity, Appl. Mech. Rev., 66, 024803, (2014), (21 pages)
[21] Reddy, S. C.; Henningson, D. S., Energy growth in viscous channel flows, J. Fluid Mech., 252, 209-238, (1993) · Zbl 0789.76026
[22] Schmid, P. J., Nonmodal stability theory, Annu. Rev. Fluid Mech., 39, 129-162, (2007) · Zbl 1296.76055
[23] Brandt, L.; Sipp, D.; Pralits, J. O.; Marquet, O., Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer, J. Fluid Mech., 687, 503-528, (2011) · Zbl 1241.76340
[24] Chomaz, J. M., Global instabilities in spatially developing flows: non-normality and nonlinearity, Annu. Rev. Fluid Mech., 37, 357-392, (2005) · Zbl 1117.76027
[25] Henningson, D. S.; Lundbladh, A.; Johansson, A. V., A mechanism for bypass transition from localized disturbances in wall-bounded shear flows, J. Fluid Mech., 250, 169-207, (1993) · Zbl 0773.76030
[26] Pringle, C. C.T.; Kerswell, R., Using nonlinear transient growth to construct the minimal seed for shear flow turbulence, Phys. Rev. Lett., 105, 154502, (2010)
[27] Monokrousos, A.; Bottaro, A.; Brandt, L.; Di Vita, A.; Henningson, D. S., Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows, Phys. Rev. Lett., 106, 13, 134502, (2011)
[28] Orr, W. M.F., The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. part I: a perfect liquid. part II: A viscous liquid, Proc. R. Irish Acad. A, 27, 9-138, (1907)
[29] Duguet, Y.; Brandt, L.; Larsson, B. R.J., Towards minimal perturbations in transitional plane Couette flow, Phys. Rev. E, 82, 2, 026316, (2010)
[30] Duguet, Y.; Monokrousos, A.; Brandt, L.; Henningson, D. S., Minimal transition thresholds in plane Couette flow, Phys. Fluids, 25, 084103, (2013)
[31] Cherubini, S.; De Palma, P.; Robinet, J.-C.; Bottaro, A., Rapid path to transition via nonlinear localized optimal perturbations, Phys. Rev. E, 82, 066302, (2010)
[32] Cherubini, S.; De Palma, P.; Robinet, J. C.; Bottaro, A., The minimal seed of turbulent transition in a boundary layer, J. Fluid Mech., 689, 221-253, (2011) · Zbl 1241.76246
[33] Cherubini, S.; De Palma, P., Non-linear optimal perturbations in a Couette flow: bursting and transition, J. Fluid Mech., 716, 251-279, (2013) · Zbl 1284.76135
[34] Brandt, L.; Schlatter, P.; Henningson, D. S., Transition in boundary layers subject to free-stream turbulence, J. Fluid Mech., 517, 167-198, (2004) · Zbl 1131.76326
[35] Schlatter, P.; Brandt, L.; de Lange, H. C.; Henningson, D. S., On streak breakdown in bypass transition, Phys. Fluids, 20, 101505, (2008) · Zbl 1182.76669
[36] Westin, K. J.A.; Boiko, A. V.; Klingmann, B. G.B.; Kozlov, V. V.; Alfredsson, P. H., Experiments in a boundary layer subjected to free stream turbulence. part 1. boundary layer structure and receptivity, J. Fluid Mech., 281, 193-218, (1994)
[37] Boiko, A. V.; Westin, K. J.A.; Klingmann, B. G.B.; Kozlov, V. V.; Alfredsson, P. H., Experiments in a boundary layer subjected to free stream turbulence. part 2. the role of TS-waves in the transition process, J. Fluid Mech., 281, 219-245, (1994)
[38] Matsubara, M.; Alfredsson, P. H., Disturbance growth in boundary layers subjected to free-stream turbulence, J. Fluid Mech., 430, 149-168, (2001) · Zbl 0963.76509
[39] Andersson, P.; Berggren, M.; Henningson, D. S., Optimal disturbances and bypass transition in boundary layers, Phys. Fluids, 11, 134-150, (1999) · Zbl 1147.76308
[40] Luchini, P., Reynolds-number independent instability of the boundary layer over a flat surface. part 2: optimal perturbations, J. Fluid Mech., 404, 289-309, (2000) · Zbl 0959.76022
[41] Schrader, L.-U.; Brandt, L.; Mavriplis, C.; Henningson, D. S., Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge, J. Fluid Mech., 653, 1, 245-271, (2010) · Zbl 1193.76057
[42] Schrader, L.-U.; Mavriplis, C.; Brandt, L.; Henningson, D. S., Nonlinear receptivity to oblique vortical modes in flow past an elliptic leading edge, J. Turbl., 13, (2012)
[43] Brandt, L.; Henningson, D. S., Transition of streamwise streaks in zero-pressure-gradient boundary layers, J. Fluid Mech., 472, 229-262, (2002) · Zbl 1163.76359
[44] Brandt, L., Numerical studies of the instablity and breakdown of a boundary-layer low-speed streak, Eur. J. Mech./B Fluids, 26, 1, 64-82, (2007) · Zbl 1151.76452
[45] Zaki, T. A.; Durbin, P. A., Mode interaction and the bypass route to transition, J. Fluid Mech., 531, 85-111, (2005) · Zbl 1070.76024
[46] Mans, J.; de Lange, H. C.; van Steenhoven, A. A., Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence, Phys. Fluids, 19, 088101, (2007) · Zbl 1182.76490
[47] Brandt, L.; de Lange, H. C., Streak interactions and breakdown in boundary layer flows, Phys. Fluids, 20, 024107, 1-16, (2008) · Zbl 1182.76082
[48] Nolan, K.; Walsh, E.; McEligot, D., Quadrant analysis of a transitional boundary layer subject to free-stream turbulence, J. Fluid Mech., 658, 310-335, (2010) · Zbl 1205.76020
[49] Nolan, K.; Walsh, E., Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence, J. Fluid Mech., 702, 215-238, (2012) · Zbl 1248.76006
[50] Fransson, J. H.M.; Matsubara, M.; Alfredsson, P. H., Transition induced by free-stream turbulence, J. Fluid Mech., 527, 1-25, (2005) · Zbl 1142.76303
[51] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991)
[52] Lundell, F., Reactive control of transition induced by free-stream turbulence: an experimental demonstration, J. Fluid Mech., 585, 1, 41-71, (2007) · Zbl 1118.76011
[53] Monokrousos, A.; Brandt, L.; Schlatter, P.; Henningson, D. S., DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence, Int. J. Heat Fluid Flow, 29, 841-855, (2008)
[54] Jacobs, R. G.; Durbin, P. A., Shear sheltering and the continuous spectrum of the Orr-Sommerfeld equation, Phys. Fluids, 10, 2006-2011, (1998) · Zbl 1185.76578
[55] Zaki, T. A.; Saha, S., On shear sheltering and the structure of vortical modes in single-and two-fluid boundary layers, J. Fluid Mech., 626, 111, (2009) · Zbl 1171.76365
[56] Zaki, T. A., From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition, Flow Turbl. Combust., 1-23, (2013)
[57] Zaki, T. A.; Wissink, J.; Rodi, W.; Durbin, P. A., Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence, J. Fluid Mech., 665, 57-98, (2010) · Zbl 1225.76147
[58] Kim, H. T.; Kline, S. J.; Reynolds, W. C., The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., 50, 133-160, (1971)
[59] Swearingen, J. D.; Blackwelder, R. F., The growth and breakdown of streamwise vortices in the presence of a wall, J. Fluid Mech., 182, 255-290, (1987)
[60] Hamilton, J. M.; Kim, J.; Waleffe, F., Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287, 317-348, (1995) · Zbl 0867.76032
[61] Waleffe, F., On a self-sustaining process in shear flows, Phys. Fluids, 9, 883-900, (1997)
[62] Moehlis, J.; Faisst, H.; Eckhardt, B., A low-dimensional model for turbulent shear flows, New J. Phys., 6, 1, 56, (2004)
[63] Butler, K. M.; Farrell, B. F., Optimal perturbations and streak spacing in wall-bounded turbulent shear flow, Phys. Fluids, 5, 774-777, (1993)
[64] Reynolds, W. C.; Hussain, A. K.M. F., The mechanics of an organized wave in turbulent shear flow. part 3. theoretical models and comparisons with experiments, J. Fluid Mech., 54, 263-288, (1972)
[65] del Álamo, J. C.; Jiménez, J., Linear energy amplification in turbulent channels, J. Fluid Mech., 559, 205-213, (2006) · Zbl 1095.76021
[66] Cossu, C.; Pujals, G.; Depardon, S., Optimal transient growth and very large-scale structures in turbulent boundary layers, J. Fluid Mech., 619, 79-94, (2009) · Zbl 1156.76400
[67] Pujals, G.; García-Villalba, M.; Cossu, C.; Depardon, S., A note on optimal transient growth in turbulent channel flows, Phys. Fluids, 21, 015109, (2009) · Zbl 1183.76425
[68] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 741-773, (1967)
[69] Smith, J. R.; Metzler, S. P., The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer, J. Fluid Mech., 129, 27-54, (1983)
[70] Hwang, Y.; Cossu, C., Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow, J. Fluid Mech., 664, 51-73, (2010) · Zbl 1221.76104
[71] Hwang, Y.; Cossu, C., Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number, J. Fluid Mech., 643, 333, (2010) · Zbl 1189.76191
[72] Willis, A. P.; Hwang, Y.; Cossu, C., Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow, Phys. Rev. E, 82, 3, 036321, (2010)
[73] Pujals, G.; Cossu, C.; Depardon, S., Forcing large-scale coherent streaks in a zero-pressure-gradient turbulent boundary layer, J. Turbl., 11, 25, 1-13, (2010)
[74] Landahl, M. T., On sublayer streaks, J. Fluid Mech., 212, 593-614, (1990) · Zbl 0695.76027
[75] Hwang, Y.; Cossu, C., Self-sustained process at large scales in turbulent channel flow, Phys. Rev. Lett., 105, 4, 44505, (2010)
[76] Hwang, Y.; Cossu, C., Self-sustained processes in the logarithmic layer of turbulent channel flows, Phys. Fluids, 23, 061702, (2011) · Zbl 1308.76147
[77] Pujals, G.; Depardon, S.; Cossu, C., Drag reduction of a 3d bluff body using coherent streamwise streaks, Exp. Fluids, 49, 5, 1085-1094, (2010)
[78] McKeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138
[79] Jovanović, M. R.; Bamieh, B., Componentwise energy amplification in channel flows, J. Fluid Mech., 534, 145-183, (2005) · Zbl 1074.76016
[80] Sharma, A. S.; McKeon, B. J., On coeherent structure in wall turbulence, J. Fluid Mech., 728, 196-238, (2013) · Zbl 1291.76173
[81] Gayme, D.; McKeon, B.; Bamieh, B.; Papachristodoulou, A.; Doyle, J., Amplification and nonlinear mechanisms in plane Couette flow, Phys. Fluids, 23, 6, 065108, (2011)
[82] Gualtieri, P.; Casciola, C.; Benzi, R.; Amati, G.; Piva, R., Scaling laws and intermittency in homogeneous shear flow, Phys. Fluids, 14, 583, (2002) · Zbl 1184.76197
[83] Kawahara, G.; Jiménez, J.; Uhlmann, M.; Pinelli, A., The instability of streaks in near-wall turbulence, (Tech. rep., (1998), NASA-Stanford University Center for Turbulence Research, Annual Research Briefs), 155-170
[84] Schoppa, W.; Hussain, F., Genesis and dynamics of coherent structures in near-wall turbulence: a new look, (Panton, R. L., Self-Sustaining Mechanisms of Wall Turbulence, (1997), Computational Mechanics Publications Southampton), 385-422, (Chapter 7)
[85] Jiménez, J.; Pinelli, A., The autonomous cycle of near wall turbulence, J. Fluid Mech., 389, 335-359, (1999) · Zbl 0948.76025
[86] Schoppa, W.; Hussain, F., Coherent structure generation in near-wall turbulence, J. Fluid Mech., 453, 57-108, (2002) · Zbl 1141.76408
[87] Jiménez, J.; Simens, M. P., Low dimensional dynamics of a turbulent wall flow, J. Fluid Mech., 435, 81-91, (2001) · Zbl 1022.76022
[88] Pumir, A., Turbulence in homogeneous shear flows, Phys. Fluids, 8, 3112, (1996) · Zbl 1027.76582
[89] Rogers, M. M.; Moin, P., The structure of the vorticity field in homogeneous turbulent flows, J. Fluid Mech., 176, 33-66, (1987)
[90] Lee, M. J.; Kim, J.; Moin, P., Structure of turbulence at high shear rate, J. Fluid Mech., 216, 1, 561-583, (1990)
[91] Kida, S.; Tanaka, M., Dynamics of vortical structures in a homogeneous shear flow, J. Fluid Mech., 274, 1, 43-68, (1994) · Zbl 0814.76049
[92] Sagaut, P.; Cambon, C., Homogeneous turbulence dynamics, (2008), Cambridge University Press Cambridge · Zbl 1154.76003
[93] Pumir, A., A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Phys. Fluids, 6, 2118, (1994) · Zbl 0834.76040
[94] Pumir, A.; Shraiman, B. I., Persistent small scale anisotropy in homogeneous shear flows, Phys. Rev. Lett., 75, 17, 3114, (1995)
[95] Gualtieri, P.; Picano, F.; Casciola, C., Anisotropic clustering of inertial particles in homogeneous shear flow, J. Fluid Mech., 629, 25, (2009) · Zbl 1181.76081
[96] Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C., Statistics of particle pair relative velocity in the homogeneous shear flow, Physica D, 241, 3, 245-250, (2012)
[97] Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C., Clustering and turbulence modulation in particle-laden shear flows, J. Fluid Mech., 715, 134-162, (2013), 1 · Zbl 1284.76189
[98] Yakhot, V., A simple model for self-sustained oscillations in homogeneous shear flow, Phys. Fluids, 15, 2, L17, (2003)
[99] Huerre, P.; Rossi, M., Hydrodynamic instabilities in open flows, (Godrèche, C.; Manneville, P., Hydrodynamic and Nonlinear Instabilities, (1998), Cambridge University Press), 81-294 · Zbl 0904.76021
[100] Govindarajan, R.; Sahu, K. C., Instabilities in viscosity-stratified flow, Annu. Rev. Fluid Mech., 46, 1, 331-353, (2014) · Zbl 1297.76067
[101] Chikkadi, V.; Sameen, A.; Govindarajan, R., Preventing transition to turbulence: a viscosity stratification does not always help, Phys. Rev. Lett., 95, 264504, (2005)
[102] Nouar, C.; Bottaro, A.; Brancher, J. P., Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids, J. Fluid Mech., 592, 177-194, (2007) · Zbl 1128.76026
[103] Liu, R.; Liu, Q., Non-modal instability in plane Couette flow of a power-law fluid, J. Fluid Mech., 676, 145-171, (2011) · Zbl 1241.76177
[104] White, C. M.; Mungal, M. G., Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech., 40, 235-256, (2008) · Zbl 1229.76043
[105] Hoda, N.; Jovanović, M. R.; Kumar, S., Energy amplification in channel flows of viscoelastic fluids, J. Fluid Mech., 601, 407-424, (2008) · Zbl 1151.76372
[106] Hoda, N.; Jovanovic, M. R.; Kumar, S., Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids, J. Fluid Mech., 625, 411-434, (2009) · Zbl 1171.76364
[107] Bird, R.; Curtiss, C.; Armstrong, R.; Hassager, O., (Dynamics of Polymer Liquids, Kinetic Theory, vol.2, (1987), Wiley New York)
[108] Zhang, M.; Lashgari, I.; Zaki, T. A.; Brandt, L., Linear stability analysis of channel flow of viscoelastic Oldroyd-b and FENE-P fluids, J. Fluid Mech., 737, 249-270, (2013) · Zbl 1294.76119
[109] Jovanović, M. R.; Kumar, S., Transient growth without inertia, Phys. Fluids, 22, 2, 023101, (2010) · Zbl 1183.76263
[110] Jovanović, M. R.; Kumar, S., Nonmodal amplification of stochastic disturbances in strongly elastic channel flows, J. Non-Newton. Fluid Mech., 166, 14-15, 755-778, (2011) · Zbl 1282.76052
[111] Sproull, W. T., Viscosity of dusty gases, Nature, 190, 976-978, (1961)
[112] Klinkenberg, J.; De Lange, H.; Brandt, L., Modal and non-modal stability of particle-laden channel flow, Phys. Fluids, 23, 064110, (2011)
[113] Saffman, P. G., On the stability of laminar flow of a dusty gas, J. Fluid Mech., 13, 120-128, (1962) · Zbl 0105.39605
[114] Michael, D. H., The stability of plane Poiseuille flow of a dusty gas, J. Fluid Mech., 18, 19-32, (1964) · Zbl 0125.17904
[115] Klinkenberg, J.; Sardina, G.; de Lange, H.; Brandt, L., Numerical study of laminar-turbulent transition in particle-laden channel flow, Phys. Rev. E, 87, 4, 043011, (2013)
[116] Zhao, L. H.; Andersson, H. I.; Gillissen, J. J.J., Turbulence modulation and drag reduction by spherical particles, Phys. Fluids, 22, 081702, (2010)
[117] Klinkenberg, J.; Lange, H.; Brandt, L., Linear stability of particle laden flows: the influence of added mass, fluid acceleration and Basset history force, Meccanica, 1-17, (2013)
[118] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 883-889, (1983) · Zbl 0538.76031
[119] Uhlmann, M., An immersed boundary method with direct forcing for simulation of particulate flows, J. Comput. Phys., 209, 448-476, (2005) · Zbl 1138.76398
[120] Breugem, W.-P., A second-order accurate immersed boundary metod for fully resolved simulations of particle-laden flows, J. Comput. Phys., 231, 13, 4469-4498, (2012) · Zbl 1245.76064
[121] Picano, F.; Breugem, W.-P.; Mitra, D.; Brandt, L., Shear thickening in non-Brownian suspensions: an excluded volume effect, Phys. Rev. Lett., 111, 098302, (2013)
[122] Lambert, R. A.; Picano, F.; Breugem, W.-P.; Brandt, L., Active suspensions in thin films: nutrient uptake and swimmer motion, J. Fluid Mech., 733, 528-557, (2013) · Zbl 1294.76298
[123] Cossu, C.; Brandt, L.; Bagheri, S.; Henningson, D. S., Secondary threshold amplitudes for sinuous streak breakdown, Phys. Fluids, 23, 074103, (2011)
[124] Matas, J. P.; Morris, J. F.; Guazzelli, E., Transition to turubulence in particulate pipe flow, Phys. Rev. Lett., 90, 014501, (2003)
[125] Henningson, D., Comment on “transition in shear flows. nonlinear normality versus nonnormal linearity”, Phys. Fluids, 8, 8, 2257, (1996)
[126] Kim, J.; Lim, J., A linear process in wall-bounded turbulent shear flows, Phys. Fluids, 12, 8, 1885-1888, (2000) · Zbl 1184.76284
[127] Jiménez, J., How linear is wall-bounded turbulence?, Phys. Fluids, 25, 110814, (2013)
[128] Squire, H. B., On the stability of three-dimensional disturbances of viscous flow between parallel walls, Proc. R. Soc. Lond. A., 142, 621-628, (1933) · JFM 59.1458.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.