×

zbMATH — the first resource for mathematics

Isogeometric boundary element analysis using unstructured T-splines. (English) Zbl 1297.74156
Summary: We couple collocated isogeometric boundary element methods and unstructured analysis-suitable T-spline surfaces for linear elastostatic problems. We extend the definition of analysis-suitable T-splines to encompass unstructured control grids (unstructured meshes) and develop basis functions which are smooth (rational) polynomials defined in terms of the Bézier extraction framework and which pass standard patch tests. We then develop a collocation procedure which correctly accounts for sharp edges and corners, extraordinary points, and T-junctions. This approach is applied to several three-dimensional problems, including a real-world T-spline model of a propeller. We believe this work clearly illustrates the power of combining new analysis-suitable computer aided design technologies with established analysis methodologies, in this case, the boundary element method.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Software:
ISOGAT
PDF BibTeX Cite
Full Text: DOI
References:
[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley Chichester · Zbl 1378.65009
[3] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[4] Evans, J. A.; Bazilevs, Y.; Babuška, I.; Hughes, T. J.R., n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1726-1741, (2009) · Zbl 1227.65093
[5] Akkerman, I.; Bazilevs, Y.; Calo, V.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371-378, (2008) · Zbl 1162.76355
[6] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173-201, (2007) · Zbl 1169.76352
[7] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and residual-based variational multiscale method, J. Comput. Phys., 229, 3402-3414, (2010) · Zbl 1290.76037
[8] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 13-16, 780-790, (2010) · Zbl 1406.76023
[9] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 310-322, (2006) · Zbl 1161.74020
[10] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37, (2008) · Zbl 1169.74015
[11] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C.; Hughes, T. J.R., Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
[12] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J.R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198, 45-46, 3534-3550, (2009) · Zbl 1229.74096
[13] Auricchio, F.; da Veiga, L. B.; Lovadina, C.; Reali, A., The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Engrg., 199, 314-323, (2010) · Zbl 1227.74061
[14] Auricchio, F.; da Veiga, L. B.; Buffa, A.; Lovadina, C.; Reali, A.; Sangalli, G., A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 160-172, (2007) · Zbl 1169.74643
[15] Elguedj, T.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732-2762, (2008) · Zbl 1194.74518
[16] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[17] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289, (2010) · Zbl 1227.74107
[18] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Int. J. Numer. Methods Engrg., 200, 1367-1378, (2011) · Zbl 1228.74077
[19] Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M. C.; Scott, M. A.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, Int. J. Numer. Methods Engrg., 83, 765-785, (2010) · Zbl 1197.74177
[20] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 374-382, (2010) · Zbl 1227.74068
[21] Kiendl, J.; Bazilevs, Y.; Hsu, M. C.; Wuechner, R.; Bletzinger, K. U., The bending strip method for isogeometric analysis of Kirchhoff-love shell structures comprised of multiple patches, Comput. Methods Appl. Mech. Engrg., 199, 37-40, 2403-2416, (2010) · Zbl 1231.74482
[22] Gomez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333-4352, (2008) · Zbl 1194.74524
[23] Gomez, H.; Hughes, T. J.R.; Nogueira, X.; Calo, V. M., Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 25-28, 1828-1840, (2010) · Zbl 1231.76191
[24] Borden, M. J.; Scott, M. A.; Verhoosel, C. V.; Landis, C. M.; Hughes, T. J.R., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95, (2012) · Zbl 1253.74089
[25] Lipton, S.; Evans, J. A.; Bazilevs, Y.; Elguedj, T.; Hughes, T. J.R., Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 357-373, (2010) · Zbl 1227.74112
[26] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[27] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 29-32, 2059-2071, (2010) · Zbl 1231.74352
[28] Nagy, A. P.; Abdalla, M. M.; Gurdal, Z., Isogeometric sizing and shape optimization of beam structures, Comput. Methods Appl. Mech. Engrg., 199, 17-20, 1216-1230, (2010) · Zbl 1227.74047
[29] Nagy, A. P.; Abdalla, M. M.; Gurdal, Z., On the variational formulation of stress constraints in isogeometric design, Comput. Methods Appl. Mech. Engrg., 199, 41-44, 2687-2696, (2010) · Zbl 1231.74351
[30] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 17-20, 1143-1152, (2010) · Zbl 1227.78026
[31] Cohen, E.; Martin, T.; Kirby, R. M.; Lyche, T.; Riesenfeld, R. F., Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 334-356, (2010) · Zbl 1227.74109
[32] Lu, J., Circular element: isogeometric elements of smooth boundary, Comput. Methods Appl. Mech. Engrg., 198, 30-32, 2391-2402, (2009) · Zbl 1229.74134
[33] Kim, H.; Seo, Y.; Youn, S., Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198, 37-40, 2982-2995, (2009) · Zbl 1229.74131
[34] Costantini, P.; Manni, C.; Pelosi, F.; Sampoli, M. L., Quasi-interpolation in isogeometric analysis based on generalized B-splines, Comput. Aided Geom. Des., 27, 8, 656-668, (2010) · Zbl 1205.65049
[35] M. Aigner, C. Heinrich, B. Juettler, E. Pilgerstorfer, B. Simeon, A.V. Vuong, Swept volume parameterization for isogeometric analysis, in: E.R. Hancock, R.R. Martin, M.A. Sabin (Eds.), Mathematics of Surfaces XIII, Lecture Notes in Computer Science, vol. 5654, 2009, pp. 19-44. · Zbl 1253.65182
[36] Martin, T.; Cohen, E.; Kirby, R. M., Volumetric parameterization and trivariate B-spline Fitting using harmonic functions, Comput. Aided Geom. Des., 26, 6, 648-664, (2009) · Zbl 1205.65094
[37] Wang, W.; Zhang, Y., Wavelets-based NURBS simplification and fairing, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 290-300, (2010) · Zbl 1227.74118
[38] Wang, W.; Zhang, Y.; Scott, M. A.; Hughes, T. J.R., Converting an unstructured quadrilateral mesh to a standard T-spline surface, Comput. Mech., 48, 477-498, (2011) · Zbl 1248.65024
[39] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccs, ACM Trans. Graph., 22, 477-484, (2003)
[40] Sederberg, T. W.; Finnigan, G. T.; Li, X.; Lin, H., Watertight trimmed NURBS, ACM Trans. Graph., 27, 1-79, (2008)
[41] H. Ipson, T-spline merging, Master’s Thesis, Brigham Young University, 2005.
[42] Sederberg, T. W.; Cardon, D. L.; Finnigan, G. T.; North, N. S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM Trans. Graph., 23, 276-283, (2004)
[43] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206-222, (2012) · Zbl 1243.65030
[44] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263, (2010) · Zbl 1227.74123
[45] Dörfel, M.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275, (2009) · Zbl 1227.74125
[46] M.A. Scott, T-splines as a Design-Through-Analysis technology, Ph.D. Thesis, The University of Texas at Austin, 2011.
[47] Li, X.; Zheng, J.; Sederberg, T. W.; Hughes, T. J.R.; Scott, M. A., On linear independence of T-spline blending functions, Comput. Aided Geom. Des., 29, 63-76, (2012) · Zbl 1251.65012
[48] Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; de Borst, R., An isogeometric analysis approach to gradient damage models, Int. J. Numer. Methods Engrg., 86, 115-134, (2011) · Zbl 1235.74320
[49] Verhoosel, C. V.; Scott, M. A.; de Borst, R.; Hughes, T. J.R., An isogeometric approach to cohesive zone modeling, Int. J. Numer. Methods Engrg., 87, 336-360, (2011) · Zbl 1242.74169
[50] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249-252, 28-41, (2012) · Zbl 1348.74094
[51] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249-252, 116-150, (2012) · Zbl 1348.65055
[52] Y. Zhang, W. Wang, T.J.R. Hughes, Solid T-spline construction from boundary representations for genus-zero geometry, ICES, Report 11-40.
[53] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. Numer. Methods Engrg., 87, 15-47, (2011) · Zbl 1242.74097
[54] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Engrg., 88, 126-156, (2011) · Zbl 1242.65243
[55] Beirão da Veiga, L.; Buffa, A.; Cho, D.; Sangalli, G., Isogeometric analysis using T-splines on two-patch geometries, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1787-1803, (2011) · Zbl 1228.65229
[56] Jaswon, M., Integral equation methods in potential theory - I, Proc. R. Soc. Lond., A275, 23-32, (1963) · Zbl 0112.33103
[57] Symm, G., Integral equation methods in potential theory - II, Proc. R. Soc. Lond., A275, 33-46, (1963) · Zbl 0112.33201
[58] Cruse, T., Numerical solutions in three dimensional elastostatics, Int. J. Solids Struct., 5, 1259-1274, (1969) · Zbl 0181.52404
[59] Lachat, J.; Watson, J., Effective numerical treatment of boundary integral equations: a formulation for three dimensional elastostatics, Int. J. Numer. Methods Engrg., 10, 991-1005, (1976) · Zbl 0332.73022
[60] Cervera, E.; Trevelyan, J., Evolutionary structural optimisation based on boundary representation of NURBS: part I: 2D algorithms, Comput. Struct., 23-24, 83, 1902-1916, (2005)
[61] Cervera, E.; Trevelyan, J., Evolutionary structural optimisation based on boundary representation of NURBS: part II: 3D algorithms, Comput. Struct., 23-24, 83, 1917-1929, (2005)
[62] C. Politis, A.I. Ginnis, P.D. Kaklis, K. Belibassakis, C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, in: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM ’09, 2009, pp. 349-354.
[63] Simpson, R.; Bordas, S.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100, (2012) · Zbl 1243.74193
[64] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437, (2011)
[65] Arnold, D.; Wendland, W. L., On the asymptotic convergence of collocation methods, Math. Comput., 41, 164, 349-381, (1983) · Zbl 0541.65075
[66] Saranen, J.; Wendland, W. L., On the asymptotic convergence of collocation methods with spline functions of even degree, Math. Comput., 45, 171, 91-108, (1985) · Zbl 0623.65145
[67] Hsiao, G.; Prössdorf, S., A generalization of the Arnold-wendland lemma to a modified collocation method for boundary integral equations in \(\mathbb{R}^3\), Math. Nachr., 163, 133-144, (1993) · Zbl 0802.65115
[68] Costabel, M.; McLean, W., Spline collocation for strongly elliptic equations on the torus, Numer. Math., 62, 4, 511-538, (1992) · Zbl 0767.65079
[69] Juhl, P., A note on the convergence of the direct collocation boundary element method, J. Sound Vib., 212, 4, 703-719, (1998) · Zbl 1235.76159
[70] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY · Zbl 1191.74002
[71] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. Methods Appl. Mech. Engrg., 199, 23-24, 1437-1445, (2010) · Zbl 1231.65027
[72] Sederberg, T. W.; Zheng, J.; Song, X., Knot intervals and multi-degree splines, Comput. Aided Geom. Des., 20, 455-468, (2003) · Zbl 1069.41507
[73] Catmull, E.; Clark, J., Recursively generated B-spline surfaces on arbitrary topological meshes, Comput. Aided Des., 10, 350-355, (1978)
[74] Doo, D.; Sabin, M., Behaviour of recursive division surfaces near extraordinary points, Comput. Aided Des., 10, 6, 356-360, (1978)
[75] C. Loop, Smooth subdivision surfaces based on triangles, Master’s Thesis, University of Utah, 1987.
[76] Sabin, M., Recent progress in subdivision: a survey, Adv. Multiresolut. Geom. Model., 203-230, (2005) · Zbl 1065.65038
[77] Reif, U., A unified approach to subdivision algorithms near extraordinary vertices, Comput. Aided Geom. Des., 12, 2, 153-174, (1995) · Zbl 0872.65007
[78] Reif, U.; Schröder, P., Curvature integrability of subdivision surfaces, Adv. Comput. Math., 14, 2, 157-174, (2001) · Zbl 0986.65009
[79] Stam, J., Exact evaluation of catmull-Clark subdivision surfaces at arbitrary parameter values, (Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, (1998), ACM), 395-404
[80] Cashman, T. J.; Augsdörfer, U. H.; Dodgson, N. A.; Sabin, M. A., NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes, ACM Trans. Graph., 28, 46:1-46:9, (2009) · Zbl 1258.65012
[81] T.W. Sederberg, J. Zheng, D. Sewell, M. Sabin, Non-uniform recursive subdivision surfaces, in: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, 1998, pp. 387-394.
[82] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. Numer. Methods Engrg., 47, 2039-2072, (2000) · Zbl 0983.74063
[83] Cirak, F.; Ortiz, M., Fully \(C^1\)-conforming subdivision elements for finite deformation thin shell analysis, Int. J. Numer. Methods Engrg., 51, 813-833, (2001) · Zbl 1039.74045
[84] Cirak, F.; Scott, M. J.; Antonsson, E. K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 137-148, (2002)
[85] Cirak, F.; Ortiz, M.; Pandolfi, A., A cohesive approach to thin-shell fracture and fragmentation, Comput. Methods Appl. Mech. Engrg., 194, 21-24, 2604-2618, (2005) · Zbl 1082.74052
[86] Burkhart, D.; Hamann, B.; Umlauf, G., Isogeometric finite element analysis based on catmull-Clark subdivision solids, (Computer Graphics Forum, vol. 29, (2010), Wiley Online Library), 1575-1584
[87] Boehm, W., Visual continuity, Comput. Aided Des., 20, 6, 307-311, (1988) · Zbl 0668.65009
[88] Degen, W. L.F., Explicit continuity conditions for adjacent Bézier surface patches, Comput. Aided Geom. Des., 7, 1-4, 181-189, (1990) · Zbl 0711.65008
[89] Liu, D., \(\mathit{GC}^1\) continuity conditions between two adjacent rational Bézier surface patches, Comput. Aided Geom. Des., 7, 1-4, 151-163, (1990) · Zbl 0713.65010
[90] Zheng, J.; Wang, G.; Liang, Y., Curvature continuity between adjacent rational Bézier patches, Comput. Aided Geom. Des., 9, 5, 321-335, (1992) · Zbl 0782.65016
[91] Peters, J., Patching catmull-Clark meshes, (Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, (2000), ACM Press/Addison-Wesley Publishing Co.), 255-258
[92] Loop, C.; Schaefer, S., \(G^2\) tensor product splines over extraordinary vertices, (Computer Graphics Forum, vol. 27, (2008), Blackwell Science Ltd.), 1373-1382
[93] Shi, X.; Wang, T.; Wu, P.; Liu, F., Reconstruction of convergent \(G^1\) smooth B-spline surfaces, Comput. Aided Geom. Des., 21, 9, 893-913, (2004) · Zbl 1069.65534
[94] Loop, C., Second order smoothness over extraordinary vertices, (Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, (2004), ACM), 165-174
[95] Loop, C.; Schaefer, S., Approximating catmull-Clark subdivision surfaces with bicubic patches, ACM Trans. Graph., 27, 1-11, (2008)
[96] Å. Björck, Numerical Methods for Least Squares Problems, Society for Industrial Mathematics, 1996.
[97] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107, (2010) · Zbl 1226.65091
[98] F. Auricchio, L. Beirao de Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics, ICES, Report 12-07. · Zbl 1348.74305
[99] Telles, J., A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals, Int. J. Numer. Methods Engrg., 24, 5, 959-973, (1987) · Zbl 0622.65014
[100] Johnston, P.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Engrg., 62, 4, 564-578, (2005) · Zbl 1119.65318
[101] Huang, Q.; Cruse, T., Some notes on singular integral techniques in boundary element analysis, Int. J. Numer. Methods Engrg., 36, 15, 2643-2659, (1993) · Zbl 0781.73076
[102] Cruse, T.; Aithal, R., Non-singular boundary integral equation implementation, Int. J. Numer. Methods Engrg., 36, 2, 237-254, (1993)
[103] Cruse, T., An improved boundary-integral equation method for three dimensional elastic stress analysis, Comput. Struct., 4, 741-754, (1974)
[104] Liu, Y., On the simple-solution method and non-singular nature of the BIE/BEM - a review and some new results, Engrg. Anal. Bound. Elem., 24, 789-795, (2000) · Zbl 0974.65110
[105] Becker, A., The boundary element method in engineering, (1992), McGraw-Hill Book Company
[106] Aliabadi, M., The boundary element method: applications in solids and structures, (2002), John Wiley & Sons · Zbl 0994.74003
[107] T-Splines, Inc., <http://www.tsplines.com/rhino/>, 2011.
[108] G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in plate bendingconforming and nonconforming solutions, in: Proceedings of the First Conference on Matrix Methods in Structural Mechanics, 1966, pp. 547-576.
[109] Piegl, L.; Tiller, W., The NURBS book, (1997), Springer-Verlag New York · Zbl 0868.68106
[110] Takacs, T.; Jüttler, B., Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3568-3582, (2011) · Zbl 1239.65014
[111] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 301-313, (2010) · Zbl 1227.65029
[112] Mi, Y.; Aliabadi, M., Dual boundary element method for three-dimensional fracture mechanics analysis, Engrg. Anal. Bound. Elem., 10, 2, 161-171, (1992)
[113] Rigby, R.; Aliabadi, M., Out-of-core solver for large, multi-zone boundary element matrices, Int. J. Numer. Methods Engrg., 38, 1507-1533, (1995) · Zbl 0830.73076
[114] Subia, S.; Ingber, M.; Mitra, A., A comparison of the semidiscontinuous element and multiple node with auxiliary boundary collocation approaches for the boundary element method, Engrg. Anal. Bound. Elem., 15, 1, 19-27, (1995)
[115] Mantic, V., A new formula for the C-matrix in the somigliana identity, J. Elast., 33, 3, 191-201, (1993) · Zbl 0801.73015
[116] Hartmann, F., The somigliana identity on piecewise smooth surfaces, J. Elast., 11, 4, 403-423, (1981) · Zbl 0487.73014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.