×

zbMATH — the first resource for mathematics

An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. (English) Zbl 1297.74126
Summary: We present a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method.
Reviewer: Reviewer (Berlin)

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74A45 Theories of fracture and damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liu, G. R.; Nguyen-Thoi, T., Smoothed finite element methods, (2010), CRC Press, Taylor and Francis Group New York
[2] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Engrg., 50, 435-466, (2001) · Zbl 1011.74081
[3] Liu, G. R., On G space theory, Int. J. Comput. Methods, 6, 257-289, (2009) · Zbl 1264.74266
[4] Liu, G. R.; Zhang, G. Y., A normed G space and weakened weak (W-2) formulation of a cell-based smoothed point interpolation method, Int. J. Comput. Methods, 6, 147-179, (2009) · Zbl 1264.74285
[5] Liu, M. B.; Liu, G. R.; Zong, Z., An overview on smoothed particle hydrodynamics, Int. J. Comput. Methods, 5, 135-188, (2008) · Zbl 1257.76092
[6] Hughes, T. J.R., The finite element method, (1987), Prentice-Hall Englewood Cliffs, NJ
[7] Liu, G. R.; Quek, S. S., The finite element method: A practical course, (2003), Butterworth Heinemann Oxford · Zbl 1027.74001
[8] Liu, G. R., Mesh-free methods: moving beyond the finite element method, (2009), CRC Press Boca Raton
[9] Liu, G. R.; Dai, K. Y.; Nguyen-Thoi, T., A smoothed finite element for mechanics problems, Comput. Mech., 39, 859-877, (2007) · Zbl 1169.74047
[10] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems, Comput. Struct., 87, 14-26, (2009)
[11] Nguyen-Thoi, T.; Liu, G. R.; Nguyen-Xuan, H., Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, Int. J. Comput. Methods, 6, 633-666, (2009) · Zbl 1267.74115
[12] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib., 320, 1100-1130, (2009)
[13] Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int. J. Numer. Methods Engrg., 78, 324-353, (2009) · Zbl 1183.74299
[14] Liu, G. R.; Nguyen-Thoi, T.; Dai, K. Y.; Lam, K. Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Engrg., 71, 902-930, (2007) · Zbl 1194.74432
[15] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Smooth finite element methods: convergence, accuracy and properties, Int. J. Numer. Methods Engrg., 74, 175-208, (2008) · Zbl 1159.74435
[16] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., A theoretical study of S-FEM models: properties, accuracy and convergence rates, Int. J. Numer. Methods Engrg., 84, 1222-1256, (2010) · Zbl 1202.74180
[17] Liu, G. R., A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory, Int. J. Numer. Methods Engrg., 81, 1093-1126, (2009) · Zbl 1183.74358
[18] Dai, K. Y.; Liu, G. R., Free and forced vibration analysis using the smoothed finite element method (SFEM), J. Sound Vib., 301, 803-820, (2007)
[19] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J. F., A smoothed finite element method for plate analysis, Comput. Methods Appl. Mech. Engrg., 197, 1184-1203, (2008) · Zbl 1159.74434
[20] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput. Methods Appl. Mech. Engrg., 198, 165-177, (2008) · Zbl 1194.74453
[21] Cui, X. Y.; Liu, G. R.; Li, G. Y.; Zhao, X.; Zhang, G. Y.; Zheng, G., Analysis of plates and shells using edge-based smoothed finite element method, Comput. Mech., 45, 141-156, (2009)
[22] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S., A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Mech., 46, 679-701, (2010) · Zbl 1260.74029
[23] Nguyen-Xuan, H.; Tran, Loc V.; Nguyen-Thoi, T.; Vu Do, H. C., Analysis of functionally graded plates using an edge-based smoothed finite element method, Comput. Struct., 93, 3019-3039, (2011)
[24] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 471-489, (2010) · Zbl 1227.74083
[25] Nguyen-Xuan, H.; Liu, G. R.; Nguyen-Thoi, T.; Nguyen Tran, C., An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures, Smart. Mater. Struct., 18, 065015, (2009)
[26] Bordas, S.; Rabczuk, T.; Nguyen-Xuan, H.; Nguyen Vinh, P.; Natarajan, S.; Bog, T.; Do Minh, Q.; Nguyen Vinh, H., Strain smoothing in FEM and XFEM, Comput. Struct., 88, 23-24, 1419-1443, (2010)
[27] Bordas, S.; Natarajan, S.; Kerfriden, P.; Augarde, C. E.; Mahapatra, D. R.; Rabczuk, T.; Pont, S. D., On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM), Int. J. Numer. Methods Engrg., 86, 4-5, 637-666, (2011) · Zbl 1216.74019
[28] Vu-Bac, N.; Nguyen-Xuan, H.; Chen, L.; Bordas, S.; Kerfriden, P.; Simpson, R. N.; Liu, G. R.; Rabczuk, T., A noded-based smoothed XFEM for fracture mechanics, CMES, 73, 331-356, (2011) · Zbl 1231.74444
[29] Liu, G. R.; Chen, L.; Nguyen-Thoi, T.; Zeng, K.; Zhang, G. Y., A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, Int. J. Numer. Methods Engrg., 83, 1466-1497, (2010) · Zbl 1202.74179
[30] Liu, G. R.; Nourbakhshnia, N.; Zhang, Y. W., A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems, Engrg. Fract. Mech., 78, 863-876, (2011)
[31] Chen, L.; Liu, G. R.; Nourbakhashnia, N.; Zeng, K., A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput. Mech., 45, 109-125, (2010) · Zbl 1398.74316
[32] Liu, G. R.; Nourbakhshnia, N.; Chen, L., A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode crack, Int. J. Comput. Methods, 7, 191-214, (2010) · Zbl 1267.74112
[33] Nourbakhshnia, N.; Liu, G. R., A quasi-static crack growth simulation based on the singular ES-FEM, Int. J. Numer. Methods Engrg., 88, 473-492, (2011) · Zbl 1242.74144
[34] Chen, L.; Liu, G. R.; Jiang, Y.; Zeng, K.; Zhang, J., A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media, Engrg. Fract. Mech., 78, 85-109, (2011)
[35] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 3005-3027, (2010) · Zbl 1231.74432
[36] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput. Mech., 45, 23-44, (2009) · Zbl 1398.74382
[37] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput. Methods Appl. Mech. Engrg., 198, 3479-3498, (2009) · Zbl 1230.74193
[38] Tran, T. N.; Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int. J. Numer. Methods Engrg., 82, 917-938, (2010) · Zbl 1188.74073
[39] He, Z. C.; Liu, G. R.; Zhong, Z. H.; Zhang, G. Y.; Chen, A. G., A coupled ES-FEM/BEM method for fluid-structure interaction problems, Engrg. Anal. Bound. Elem., 35, 140-147, (2011) · Zbl 1259.74030
[40] Szabó, B. A.; Babuška, I., Finite element analysis, (1991), John Wiley & Sons New York
[41] Banerjee, R. K., The boundary element methods in engineering, (1994), Mcgraw-Hill College, Rev Sub Edition
[42] Belytschko, T.; Lu, Y. Y.; Gu, L., Crack propagation by element-free Galerkin methods, Engrg. Fract. Mech., 51, 295-315, (1995)
[43] Duflot, M.; Nguyen-Dang, H., A meshless method with enriched weight functions for fatigue crack growth, Int. J. Numer. Methods Engrg., 59, 1945-1961, (2004) · Zbl 1060.74664
[44] Rabczuk, T.; Bordas, S.; Zi, G., A three-dimensional meshfree method for continuous multiple crack initiation, propagation and junction in statics and dynamics, Comput. Mech., 40, 473-495, (2007) · Zbl 1161.74054
[45] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131-150, (1999) · Zbl 0955.74066
[46] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Engrg., 77, 1-29, (2009) · Zbl 1195.74201
[47] Rrisvard, P., Elliptic problems in nonsmooth domains, (1985), Pitman Publishing, Inc. Boston
[48] Barsoum, R. S., On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. Methods Engrg., 10, 25-37, (1976) · Zbl 0321.73067
[49] Barsoum, R. S., Triangular quarter-point elements as elastic and perfectly plastic crack tip elements, Int. J. Numer. Methods Engrg., 11, 85-98, (1977) · Zbl 0348.73030
[50] Nguyen-Xuan, H.; Liu, G. R.; Nourbakhshnia, N.; Chen, L., A novel singular ES-FEM for crack growth simulation, Engrg. Fract. Mech., 84, 41-66, (2012)
[51] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131-150, (1999) · Zbl 0955.74066
[52] A.R. Ingraffea, M. Grigoriu, Probabilistic Fracture Mechanics: A Validation of Predictive Capability, Report 90-8, Department of Structural Engineering, Cornell University, 1990.
[53] Bittencourt, T. N.; Wawrzynek, P. A.; Ingraffea, A. R.; Sousa, J. L., Quasi-automatic simulation of crack propagation for 2D LEFM problems, Engrg. Fract. Mech., 522, 321-334, (1996)
[54] Azocar, D.; Elgueta, M.; Rivara, M. C., Automatic LEFM crack propagation method based on local lepp-Delaunay mesh refinement, Adv. Engrg. Softw., 41, 111-119, (2010) · Zbl 1423.74815
[55] Bordas, S.; Duflot, M.; Le, P., A simple error estimator for extended finite elements, Commun. Numer. Methods Engrg., 24, 11, 961-971, (2008) · Zbl 1156.65093
[56] Duflot, M.; Bordas, S., A posteriori error estimation for extended finite elements by an extended global recovery, Int. J. Numer. Methods Engrg., 76, 8, 1123-1138, (2008) · Zbl 1195.74171
[57] Ródenas, J. J.; González-Estrada, O. A.; Tarancón, J. E.; Fuenmayor, F. J., A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting, Int. J. Numer. Methods Engrg., 76, 545-571, (2008) · Zbl 1195.74194
[58] Ródenas, J. J.; González-Estrada, O. A.; Díez, P.; Fuenmayor, F. J., Accurate recovery-based error upper bounds for the extended finite element framework, Comput. Methods Appl. Mech. Engrg., 199, 2607-2621, (2010) · Zbl 1231.74437
[59] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, vol. 1, (2000), Butterworth Heinemann Oxford · Zbl 0991.74002
[60] Alberty (Kiel), J.; Carstensen (Vienna), C.; Funken (Kiel), S. A.; Klose (Kiel), R., Matlab implementation of the finite element method in elasticity, Computing, 69, 239-263, (2002) · Zbl 1239.74092
[61] Dorfler, W., A convergent adaptive algorithm for poisson’s equation, SIAM J. Numer. Anal., 33, 1106-1124, (1996) · Zbl 0854.65090
[62] L. Chen, Short implementation of bisection in MATLAB, in: P. Jorgensen, X. Shen, C.-W. Shu, N. Yan, (Eds.), Recent Advances in Computational Sciences - Selected Papers from the International Workshop on Computational Sciences and its Education, 2008, pp. 318-332.
[63] S. Funken, D. Praetorius, P. Wissgott, Efficient implementation of adaptive p1-FEM in Matlab, Preprintm, 2008. <http://www.asc.tuwien.ac.at/preprint/2008/asc19x2008.pdf>. · Zbl 1284.65197
[64] Debongnie, J. F.; Zhong, H. G.; Beckers, P., Dual analysis with general boundary conditions, Comput. Methods Appl. Mech. Engrg., 122, 183-192, (1995) · Zbl 0851.73057
[65] Thouless, M. D.; Evans, A. G.; Ashby, M. F.; Hutchinson, J. W., The edge cracking and spalling of brittle plates, Acta Metall., 35, 1333-1341, (1987)
[66] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[67] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1892-1908, (2011) · Zbl 1228.74091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.