zbMATH — the first resource for mathematics

A fully implicit finite element method for bidomain models of cardiac electromechanics. (English) Zbl 1297.74077
Summary: We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes.

74L15 Biomechanical solid mechanics
92C99 Physiological, cellular and medical topics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
74S05 Finite element methods applied to problems in solid mechanics
92-08 Computational methods for problems pertaining to biology
Full Text: DOI
[1] Abilez, O. J.; Wong, J.; Prakash, R.; Deisseroth, K.; Zarins, C. K.; Kuhl, E., Multiscale computational models for optogenetic control of cardiac function, Biophys. J., 101, 1326-1334, (2011)
[2] Aliev, R. R.; Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos Soliton. Fract., 7, 293-301, (1996)
[3] Bacharova, L.; Mateasik, A.; Krause, R.; Prinzen, F. W.; Auricchio, A.; Potse, M., The effect of reduced intracellular coupling on electrocardiographic signs of left ventricular hypertrophy, J. Electrocardiolo., 44, 571-576, (2011)
[4] Borg, T. K.; Caulfield, J. B., The collagen matrix of the heart, Federation Proc., 40, 2037-2041, (1981)
[5] Bothe, W.; Kuhl, E.; Kvitting, J. P.; Rausch, M. K.; Göktepe, S.; Swanson, J. C.; Farahmandnia, S.; Ingels, N. B.; Miller, D. C., Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart, Circulation, 124, S81-S96, (2011)
[6] Brera, M.; Jerome, J. W.; Mori, Y.; Sacco, R., A conservative and monotone mixed-hybridized finite element approximation of transport problems in heterogeneous domains, Comput. Methods Appl. Mech. Engrg., 199, 2709-2720, (2010) · Zbl 1231.76138
[7] Chen, M. Q.; Wong, J.; Kuhl, E.; Giovangrandi, L. B.; Kovacs, G. T.A., Characterization of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis, Comput. Methods Biomech. Biomed. Engrg., (2012)
[8] Costa, K. D.; Holmes, J. W.; McCulloch, A. D., Modelling cardiac mechanical properties in three dimensions, Phil. Trans. Roy. Soc. Lond. A, 359, 1233-1250, (2001) · Zbl 0994.92013
[9] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electrophysiology, Comput. Methods Biomech. Biomed. Engrg., 15, 645-656, (2012)
[10] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A three-field bi-domain based approach to the strongly coupled electromechanics of the heart, PAMM, 11, 931-934, (2011)
[11] Ennis, D. B.; Nguyen, T. C.; Riboh, J. C.; Wigström, L.; Harrington, K. B.; Daughters, G. T.; Ingels, N. B.; Miller, D. C., Myofiber angle distributions in the ovine left ventricle do not conform to computationally optimized predictions, J. Biomech., 41, 3219-3224, (2008)
[12] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve induction, Biophys. J., 1, 455-466, (1961)
[13] Flory, P. J., Thermodynamic relations for high elastic materials, Trans. Faraday Soc., 57, 829-838, (1961)
[14] Franzone, P. C.; Pavarino, L. F., A parallel solver for reaction-diffusion systems in computational electrophysiology, Math. Models Methods Appl. Sci., 14, 883-911, (2004) · Zbl 1068.92024
[15] Gerardo-Giorda, L.; Mirabella, L.; Nobile, F.; Perego, M.; Veneziani, A., A model-based block-triangular preconditioner for the bidomain system in electrocardiology, J. Comput. Phys., 228, 3625-3639, (2009) · Zbl 1187.92053
[16] Göktepe, S.; Acharya, S. N.S.; Wong, J.; Kuhl, E., Computational modeling of passive myocardium, Int. J. Numer. Methods Biomed. Engrg., 27, 1-12, (2011) · Zbl 1207.92006
[17] Göktepe, S.; Kuhl, E., Computational modeling of cardiac electrophysiology: A novel finite element approach, Int. J. Numer. Methods Engrg., 79, 156-178, (2009) · Zbl 1171.92310
[18] Göktepe, S.; Kuhl, E., Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 227-243, (2010) · Zbl 1183.78031
[19] Göktepe, S.; Wong, J.; Kuhl, E., Atrial and ventricular fibrillation - computational simulation of spiral waves in cardiac tissue, Arch. Appl. Mech., 80, 569-580, (2010) · Zbl 1271.74319
[20] Guccione, J. M.; McCulloch, A. D., Mechanics of active contraction in cardiac muscle: part I - constitutive relations for fiber stress that describe deactivation, J. Biomech. Engrg., 115, 72-81, (1993)
[21] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conductance and excitation in nerve, J. Physiol., 117, 500-544, (1952)
[22] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. Ser. A Math. Phys. Engrg. Sci., 367, 3445-3475, (2009) · Zbl 1185.74060
[23] Hunter, P. J.; Lie, W. W.; McCulloch, A. D.; Noble, D., Multiscale modeling: physiome project standards, tools, and databases, IEEE Comput., 39, 48-54, (2006)
[24] Hunter, P. J.; Pullan, A. J.; Smaill, B. H., Modeling total heart function, Annu. Rev. Biomed. Engrg., 5, 147-177, (2003)
[25] Itoh, A.; Krishnamurthy, G.; Swanson, J.; Ennis, D.; Bothe, W.; Kuhl, E.; Karlsson, M.; Davis, L.; Miller, D. C.; Ingels, N. B., Active stiffening of mitral valve leaflets in the beating heart, Amer. J. Physiol. Heart Circulat. Physiol., 296, 1766-1773, (2009)
[26] Keener, J. P.; Bogar, K., A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos Interdisciplin. J. Nonlinear Sci., 8, 234-241, (1998) · Zbl 1069.92507
[27] Kerckhoffs, R.; Healy, S.; Usyk, T.; McCulloch, A., Computational methods for cardiac electromechanics, Proc. IEEE, 94, 769-783, (2006)
[28] Kohl, P.; Hunter, P.; Noble, D., Stretch-induced changes in heart rate and rhythm clinical observations experiments and mathematical models, Progress Biophys. Mol. Biol., 71, 91-138, (1999)
[29] Kotikanyadanam, M.; Göktepe, S.; Kuhl, E., Computational modeling of electrocardiograms - a finite element approach towards cardiac excitation, Int. J. Numer. Methods Biomed. Engrg., 26, 524-533, (2010) · Zbl 1187.92062
[30] Krishnamurthy, G.; Ennis, D. B.; Itoh, A.; Bothe, W.; Swanson-Birchill, J. C.; Karlsson, M.; Kuhl, E.; Miller, D. C.; Ingels, N. B., Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis, Amer. J. Physiol. Heart Circulat. Physiol., 295, H1141-H1149, (2008)
[31] Marsden, J. E.; Hughes, T. J.R., Mathematical foundations of elasticity, (1983), Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0545.73031
[32] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Methods Engrg., 37, 1981-2004, (1994) · Zbl 0804.73067
[33] Miller, W. T.; Geselowitz, D. B., Simulation studies of the electrocardiogram i: the normal heart, Circulat. Res., 43, 301-315, (1978)
[34] Mirabella, L.; Nobile, F.; Veneziani, A., An a posteriori error estimator for model adaptivity in electrocardiology, Comput. Methods Appl. Mech. Engrg., 200, 2727-2737, (2011) · Zbl 1230.92026
[35] Munteanu, M.; Pavarino, L. F.; Scacchi, S., A scalable Newton-Krylov-Schwarz method for the bidomain reaction-diffusion system, SIAM J. Sci. Comput., 31, 3861-3883, (2009) · Zbl 1205.65261
[36] Nagumo, J.; Arimoto, S.; Yoshizawa, S., Active pulse transmission line simulating nerve axon, Proc. Inst. Radio Eng., 50, 2061-2070, (1962)
[37] Nash, M. P.; Hunter, P. J., Computational mechanics of the heart from tissue structure to ventricular function, J. Elasticity, 61, 113-141, (2000) · Zbl 1071.74659
[38] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Progress Biophys. Mol. Biol., 85, 501-522, (2004)
[39] Nickerson, D.; Nash, M.; Nielsen, P.; Smith, N.; Hunter, P., Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics, Syst. Biol., 50, 617-630, (2006)
[40] Pennacchio, M.; Simoncini, V., Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. Comput. Appl. Math., 145, 49-70, (2002) · Zbl 1006.65102
[41] Pennacchio, M.; Simoncini, V., Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Appl. Numer. Math., 59, 3033-3050, (2009) · Zbl 1171.92017
[42] Plank, G.; Burton, R. A.B.; Hales, P.; Bishop, M.; Mansoori, T.; Bernabeau, M. O.; Garny, A.; Prassl, A. J.; Bollensdorff, C.; Mason, F.; Mahmood, F.; Rodriguez, B.; Grau, V.; Schneider, J. E.; Gavaghan, G.; Kohl, P., Generation of histo-anatomically representative models of the individual heart: tools and application, Phil. Trans. Roy. Soc. Lond. A, 197, 4051-4061, (2008)
[43] Plank, G.; Liebmann, M.; dos Santos, R. W.; Vigmond, E. J.; Haase, G., IEEE Trans. Biomed. Engrg., 54, 585-596, (2007)
[44] Potse, M.; Dubé, B.; Richer, J.; Vinet, A.; Gulrajani, R. M., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Engrg., 53, 2425-2435, (2006)
[45] Prassl, A.; Kickinger, F.; Ahammer, H.; Grau, V.; Schneider, J.; Hofer, E.; Vigmond, E.; Trayanova, N.; Plank, G., Automatically generated anatomically accurate meshes for cardiac electrophysiology problems, Biomed. Engrg. IEEE Trans., 56, 1318-1330, (2009)
[46] Rohmer, D.; Sitek, A.; Gullberg, G. T., Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data, Invest. Radiol., 42, 777-789, (2007)
[47] Sainte-Marie, J.; Chapelle, D.; Cimrman, R.; Sorine, M., Modeling and estimation of the cardiac electromechanical activity, Comput. Struct., 84, 1743-1759, (2006)
[48] dos Santos, R.; Plank, G.; Bauer, S.; Vigmond, E., Parallel multigrid preconditioner for the cardiac bidomain model, Biomed. Engrg. IEEE Trans., 51, 1960-1968, (2004)
[49] Scacchi, S., A hybrid multilevel Schwarz method for the bidomain model, Comput. Methods Appl. Mech. Engrg., 197, 4051-4061, (2008) · Zbl 1194.78048
[50] Scacchi, S., A multilevel hybrid Newton-Krylov-Schwarz method for the biodomain model of electrocardiology, Comput. Methods Appl. Mech. Engrg., 200, 717-725, (2011) · Zbl 1225.92011
[51] Scacchi, S.; Franzone, P. C.; Pavarino, L.; Taccardi, B., A reliability analysis of cardiac repolarization time markers, Math. Biosci., 219, 113-128, (2009) · Zbl 1168.92014
[52] Sermesant, M.; Rhode, K.; Sanchez-Ortiz, G.; Camara, O.; Andriantsimiavona, R.; Hegde, S.; Rueckert, D.; Lambiase, P.; Bucknall, C.; Rosenthal, E.; Delingette, H.; Hill, D.; Ayache, N.; Razavi, R., Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging, Med. Image Anal., 9, 467-480, (2005)
[53] Simo, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Engrg., 85, 273-310, (1991) · Zbl 0764.73104
[54] Skouibine, K.; Trayanova, N.; Moore, P., A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium, Math. Biosci., 166, 85-100, (2000) · Zbl 0963.92019
[55] Spencer, A. J.M., Theory of invariants, (Eringen, A., Continuum Physics, vol. 1, (1971), Academic Press New York)
[56] Sundnes, J.; Lines, G. T.; Tveito, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. Biosci., 194, 233-248, (2005) · Zbl 1063.92018
[57] R.L. Taylor, FEAP - A Finite Element Analysis Program, Version 8.3, User Manual, University of California at Berkeley, 2011.
[58] Tsamis, A.; Bothe, W.; Kvitting, J. P.; Swanson, J. C.; Miller, D. C.; Kuhl, E., Active contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart, J. Mech. Behav. Biomed. Mater., 4, 1167-1176, (2011)
[59] L. Tung, A Bidomain model for describing ischaemic myocardial DC potentials, Ph.D. thesis, MIT, 1978.
[60] Usyk, T. P.; LeGrice, I. J.; McCulloch, A. D., Computational model of three-dimensional cardiac electromechanics, Comput. Visual. Sci., 4, 249-257, (2002) · Zbl 1001.92005
[61] Vigmond, E.; Aguel, F.; Trayanova, N., Computational techniques for solving the bidomain equations in three dimensions, Biomed. Engrg. IEEE Trans., 49, 1260-1269, (2002)
[62] Vigmond, E.; dos Santos, R. W.; Prassl, A.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Progress Biophys. Mol. Biol., 96, 3-18, (2008)
[63] Vigmond, E. J.; Hughes, M.; Plank, G.; Leon, L. J., Computational tools for modeling electrical activity in cardiac tissue, J. Electrocardiol., 36, 69-74, (2003)
[64] Wong, J.; Göktepe, S.; Kuhl, E., Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology, Comput. Methods Appl. Mech. Engrg., 200, 3139-3158, (2011) · Zbl 1230.92013
[65] J. Wong, E. Kuhl, Generating fiber orientation maps in human heart models using Poisson interpolation, Computer Methods in Biomechanics and Biomedical Engineering, 2012, submitted for publication.
[66] Zhang, Y.; Bazilevs, Y.; Goswami, S.; Bajaj, C. L.; Hughes, T. J.R., Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow, Comput. Methods Appl. Mech. Engrg., 196, 2943-2959, (2007) · Zbl 1121.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.