Improved computing-efficiency least-squares algorithm with application to all-pass filter design.

*(English)*Zbl 1296.94049Summary: All-pass filter design can be generally achieved by solving a system of linear equations. The associated matrices involved in the set of linear equations can be further formulated as a Toeplitz-plus-Hankel form such that a matrix inversion is avoided. Consequently, the optimal filter coefficients can be solved by using computationally efficient Levinson algorithms or Cholesky decomposition technique. In this paper, based on trigonometric identities and sampling the frequency band of interest uniformly, the authors proposed closed-form expressions to compute the elements of the Toeplitz-plus-Hankel matrix required in the least-squares design of IIR all-pass filters. Simulation results confirm that the proposed method achieves good performance as well as effectiveness.