×

Saturation effects for CTL mediated control of HIV-1 infection: a mathematical study. (English) Zbl 1296.92127

Summary: The relations between the Human Immunodeficiency Virus-1 (HIV-1) and the human immune system are astonishingly multifaceted, where the critical role for cytotoxic T lymphocytes (CTLs) in the suppression of viral replication in HIV-1 infected individuals cannot be ignored. In this research paper, we have proposed a mathematical model incorporating half saturation constant through the CTL mediated killing process and also in that sense, it has been infiltrated in the generation process of CTL through infected cells. To make the model more realistic, a time lag is introduced in the generation term of CTL population. Also an optimal control theory paradigm is used in our mathematical model to suppress the viral production. From our entire analysis, we have found threshold condition of half saturation constant and treatment schedule so that we can handle the situation of Acquired Immunodeficiency Syndrome (AIDS) patients in a better way. Our analysis reveals that, if the half saturation constant is around \(47 \mathrm{mm}^{-3}\) in the saturation process and the drug therapy is to be used around 76 days, then we can get adequate results for better treatment of a HIV-1 patient. Based on numerical results, we observed that in a highly unstable situation, administration of chemotherapy at a high dose can stabilize the system.

MSC:

92C60 Medical epidemiology
37N25 Dynamical systems in biology
34H05 Control problems involving ordinary differential equations
37C75 Stability theory for smooth dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonhoeffer S., J. Virol. 71 pp 3275– (1997)
[2] DOI: 10.1016/S0025-5564(00)00006-7 · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[3] DOI: 10.1007/s00285-002-0191-5 · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[4] A. S. Fauci and H. C. Lane, Harrison’s Principles of Internal Medicine, 16th edn. 1 (McGraw-Hill, 2000) pp. 1076–1139.
[5] Fister K. R., Electron. J. Differ. Equations 32 pp 1– (1998)
[6] DOI: 10.1080/1027366021000003289 · Zbl 1054.92031 · doi:10.1080/1027366021000003289
[7] DOI: 10.1007/s002850050076 · Zbl 0876.92016 · doi:10.1007/s002850050076
[8] DOI: 10.3201/eid0303.970303 · doi:10.3201/eid0303.970303
[9] DOI: 10.1097/00002030-199301001-00002 · doi:10.1097/00002030-199301001-00002
[10] Nowak M. A., Virus Dynamics (2000)
[11] DOI: 10.1016/0025-5564(93)90043-A · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[12] DOI: 10.1137/S0036144598335107 · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[13] DOI: 10.1126/science.271.5255.1582 · doi:10.1126/science.271.5255.1582
[14] Pontryagin L. S., Mathematical Theory of Optimal Processes 4 (1986) · Zbl 0648.00001
[15] DOI: 10.1111/j.1365-2796.2008.02047.x · doi:10.1111/j.1365-2796.2008.02047.x
[16] Roy P. K., Int. J. Evol. Equations 4 pp 227– (2009)
[17] DOI: 10.1016/j.mbs.2009.03.003 · Zbl 1168.92031 · doi:10.1016/j.mbs.2009.03.003
[18] DOI: 10.1093/intimm/12.4.467 · doi:10.1093/intimm/12.4.467
[19] DOI: 10.1073/pnas.96.25.14464 · doi:10.1073/pnas.96.25.14464
[20] Wodarz D., Math. Biosci. 114 pp 1178– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.