×

zbMATH — the first resource for mathematics

Automation of one-loop QCD computations. (English) Zbl 1296.81138
Summary: We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories
81U35 Inelastic and multichannel quantum scattering
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81-08 Computational methods for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[2] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[3] Binoth, T.; etal., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun., 181, 1612, (2010)
[4] Berger, CF; etal., Precise predictions for \(W\) + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[5] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[6] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010)
[7] Frederix, R.; Frixione, S.; Melnikov, K.; Zanderighi, G., NLO QCD corrections to five-jet production at LEP and the extraction of \(α\)_{\(s\)}(\(M\)_{\(Z\)}), JHEP, 11, 050, (2010)
[8] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[9] Frixione, S., A general approach to jet cross-sections in QCD, Nucl. Phys., B 507, 295, (1997)
[10] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Parton distributions for the LHC, Eur. Phys. J., C 63, 189, (2009)
[11] Catani, S.; Dokshitzer, YL; Seymour, MH; Webber, BR, Longitudinally invariant \(k\)_{\(T\)} clustering algorithms for hadron hadron collisions, Nucl. Phys., B 406, 187, (1993)
[12] Cacciari, M.; Salam, GP, Dispelling the \(N\)\^{}{3} myth for the \(k\)_{\(t\)} jet-finder, Phys. Lett., B 641, 57, (2006)
[13] M. Cacciari, G.P. Salam and G. Soyez, FastJet, http://fastjet.fr/.
[14] Frixione, S., Isolated photons in perturbative QCD, Phys. Lett., B 429, 369, (1998)
[15] Passarino, G.; Veltman, MJG, One loop corrections for \(e\)\^{}{+}\(e\)\^{}{−} annihilation into \(μ\)\^{}{+}\(μ\)\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[16] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. Phys., B 734, 62, (2006)
[17] Binoth, T.; etal., Precise predictions for LHC using a GOLEM, Nucl. Phys. Proc. Suppl., 183, 91, (2008)
[18] Denner, A.; Dittmaier, S.; Kallweit, S.; Pozzorini, S., NLO QCD corrections to wwbb production at hadron colliders, Phys. Rev. Lett., 106, 052001, (2011)
[19] Binoth, T.; etal., Next-to-leading order QCD corrections to \( pp → b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett., B 685, 293, (2010)
[20] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop \(n\)-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[21] Ellis, RK; Giele, WT; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP, 03, 003, (2008)
[22] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009)
[23] Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, JHEP, 07, 017, (2004)
[24] Berger, CF; etal., Precise predictions for W + 4 jet production at the large hadron collider, Phys. Rev. Lett., 106, 092001, (2011)
[25] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., Assault on the NLO wishlist: pp → ttbb, JHEP, 09, 109, (2009)
[26] Bevilacqua, G.; Czakon, M.; Hameren, A.; Papadopoulos, CG; Worek, M., Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP, 02, 083, (2011)
[27] ’t Hooft, G.; Veltman, MJG, Scalar one loop integrals, Nucl. Phys., B 153, 365, (1979)
[28] Ellis, RK; Zanderighi, G., Scalar one-loop integrals for QCD, JHEP, 02, 002, (2008)
[29] A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, arXiv:1007.4716 [SPIRES].
[30] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[31] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[32] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[33] https://launchpad.net/madgraph5.
[34] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418, (2001)
[35] Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[36] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[37] Pittau, R., Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun., 181, 1941, (2010)
[38] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978)
[39] Denner, A.; Dittmaier, S., The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl., 160, 22, (2006)
[40] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP, 01, 040, (2010)
[41] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes in the \(R\)_{\(ξ\)} gauge and in the unitary gauge, JHEP, 01, 029, (2011)
[42] Kunszt, Z.; Signer, A.; Trócsányi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys., B 411, 397, (1994)
[43] Ellis, RK; Sexton, JC, QCD radiative corrections to parton parton scattering, Nucl. Phys., B 269, 445, (1986)
[44] Campbell, JM; Ellis, RK, An update on vector boson pair production at hadron colliders, Phys. Rev., D 60, 113006, (1999)
[45] Dittmaier, S.; Uwer, P.; Weinzierl, S., NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett., 98, 262002, (2007)
[46] Dittmaier, S.; Uwer, P.; Weinzierl, S., Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: phenomenological studies for the tevatron and the LHC, Eur. Phys. J., C 59, 625, (2009)
[47] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: A study of \( pp → t\bar{t} + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[48] Melnikov, K.; Schulze, M., NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys., B 840, 129, (2010)
[49] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP, 08, 108, (2008)
[50] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[51] Campbell, JM; Ellis, RK, Next-to-leading order corrections to \(W\)\^{}{+}2 jet and \(Z\)\^{}{+}2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[52] Signer, A.; Dixon, LJ, Electron positron annihilation into four jets at next-to-leading order in \(α\)_{\(s\)}, Phys. Rev. Lett., 78, 811, (1997)
[53] Dixon, LJ; Signer, A., Complete \(O\)(\(α\)_{\(s\)}\^{}{3}) results for \(e\)\^{}{+}\(e\)\^{}{−} → (\(γ\), \(Z\)) → four jets, Phys. Rev., D 56, 4031, (1997)
[54] Bij, JJ; Glover, EWN, Z boson production and decay via gluons, Nucl. Phys., B 313, 237, (1989)
[55] Campbell, JM; Frederix, R.; Maltoni, F.; Tramontano, F., Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett., 102, 182003, (2009)
[56] Campbell, JM; Frederix, R.; Maltoni, F.; Tramontano, F., NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP, 10, 042, (2009)
[57] Febres Cordero, F.; Reina, L.; Wackeroth, D., NLO QCD corrections to W boson production with a massive b-quark jet pair at the tevatron \( p\bar{p} \) collider, Phys. Rev., D 74, 034007, (2006)
[58] Badger, S.; Campbell, JM; Ellis, RK, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP, 03, 027, (2011)
[59] Dixon, LJ; Kunszt, Z.; Signer, A., Helicity amplitudes for \(O\)(\(α\)_{\(s\)}) production of \(W\)\^{}{+}\(W\)\^{}{−}, \(W\)\^{}{±}\(Z\), ZZ, \(W\)\^{}{±}\(γ\), or pairs at hadron colliders, Nucl. Phys., B 531, 3, (1998)
[60] Campbell, JM; Ellis, RK; Maltoni, F.; Willenbrock, S., Higgs boson production in association with a single bottom quark, Phys. Rev., D 67, 095002, (2003)
[61] Zhu, S-h, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN large hadron collider, Phys. Rev., D 67, 075006, (2003)
[62] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[63] Weydert, C.; etal., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J., C 67, 617, (2010)
[64] Reina, L.; Dawson, S.; Wackeroth, D., QCD corrections to associated \( t\bar{t}h \) production at the tevatron, Phys. Rev., D 65, 053017, (2002)
[65] Dawson, S.; Orr, LH; Reina, L.; Wackeroth, D., Associated top quark Higgs boson production at the LHC, Phys. Rev., D 67, 071503, (2003)
[66] Beenakker, W.; etal., Higgs radiation off top quarks at the tevatron and the LHC, Phys. Rev. Lett., 87, 201805, (2001)
[67] Beenakker, W.; etal., NLO QCD corrections to \( t\bar{t}h \) production in hadron collisions. ((\(U\))), Nucl. Phys., B 653, 151, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.