×

Automation of one-loop QCD computations. (English) Zbl 1296.81138

Summary: We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81V22 Unified quantum theories
81U35 Inelastic and multichannel quantum scattering
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81-08 Computational methods for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES].
[2] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[3] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun.181 (2010) 1612 [arXiv:1001.1307] [SPIRES]. · Zbl 1219.82008
[4] C.F. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES].
[5] W.T. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case, JHEP06 (2008) 038 [arXiv:0805.2152] [SPIRES].
[6] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [SPIRES]. · Zbl 1290.81151
[7] R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of αs(MZ), JHEP11 (2010) 050 [arXiv:1008.5313] [SPIRES].
[8] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES].
[9] S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [SPIRES].
[10] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [SPIRES]. · Zbl 1369.81126
[11] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant kTclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187 [SPIRES].
[12] M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [SPIRES].
[13] M. Cacciari, G.P. Salam and G. Soyez, FastJet, http://fastjet.fr/.
[14] S. Frixione, Isolated photons in perturbative QCD, Phys. Lett.B 429 (1998) 369 [hep-ph/9801442] [SPIRES].
[15] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [SPIRES].
[16] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [SPIRES]. · Zbl 1192.81158
[17] T. Binoth et al., Precise predictions for LHC using a GOLEM, Nucl. Phys. Proc. Suppl.183 (2008) 91 [arXiv:0807.0605] [SPIRES].
[18] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett.106 (2011) 052001 [arXiv:1012.3975] [SPIRES].
[19] T. Binoth et al., Next-to-leading order QCD corrections to \(pp \to b\bar{b}b\bar{b} + X\) at the LHC: the quark induced case, Phys. Lett.B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].
[20] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644
[21] R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [SPIRES].
[22] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234
[23] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[24] C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [SPIRES].
[25] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[26] G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP02 (2011) 083 [arXiv:1012.4230] [SPIRES].
[27] G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys.B 153 (1979) 365 [SPIRES].
[28] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [SPIRES].
[29] A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, arXiv:1007.4716 [SPIRES]. · Zbl 1262.81253
[30] G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES].
[31] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[32] J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP09 (2007) 028 [arXiv:0706.2334] [SPIRES].
[33] https://launchpad.net/madgraph5.
[34] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [SPIRES]. · Zbl 0994.81082
[35] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES].
[36] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[37] R. Pittau, Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun.181 (2010) 1941 [arXiv:1006.3773] [SPIRES]. · Zbl 1219.81248
[38] G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys.27 (1978) 192 [SPIRES]. · Zbl 0377.65010
[39] A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl.160 (2006) 22 [hep-ph/0605312] [SPIRES].
[40] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.1010 (2010) 097] [arXiv:0910.3130] [SPIRES]. · Zbl 1269.81214
[41] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the Rξgauge and in the Unitary gauge, JHEP01 (2011) 029 [arXiv:1009.4302] [SPIRES]. · Zbl 1214.81328
[42] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES].
[43] R.K. Ellis and J.C. Sexton, QCD Radiative Corrections to Parton Parton Scattering, Nucl. Phys.B 269 (1986) 445 [SPIRES].
[44] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev.D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].
[45] S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett.98 (2007) 262002 [hep-ph/0703120] [SPIRES].
[46] S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J.C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].
[47] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of \(pp \to t\bar{t} + 2\) jets at Next-To-Leading Order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES].
[48] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys.B 840 (2010) 129 [arXiv:1004.3284] [SPIRES]. · Zbl 1206.81145
[49] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES].
[50] Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [SPIRES].
[51] J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W+2 jet and Z+2 jet production at hadron colliders, Phys. Rev.D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].
[52] A. Signer and L.J. Dixon, Electron positron annihilation into four jets at next-to-leading order in αs, Phys. Rev. Lett.78 (1997) 811 [hep-ph/9609460] [SPIRES].
[53] L.J. Dixon and A. Signer, Complete O(αs3) results for e+e− → (γ, Z) → four jets, Phys. Rev.D 56 (1997) 4031 [hep-ph/9706285] [SPIRES].
[54] J.J. van der Bij and E.W.N. Glover, Z Boson Production And Decay Via Gluons, Nucl. Phys.B 313 (1989) 237 [SPIRES].
[55] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 182003 [arXiv:0903.0005] [SPIRES].
[56] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP10 (2009) 042 [arXiv:0907.3933] [SPIRES].
[57] F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to W boson production with a massive b-quark jet pair at the Tevatron \(p\bar{p}\) collider, Phys. Rev.D 74 (2006) 034007 [hep-ph/0606102] [SPIRES].
[58] S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP03 (2011) 027 [arXiv:1011.6647] [SPIRES]. · Zbl 1301.81285
[59] L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(αs) production of W+W−, W±Z, ZZ, W±γ, or Zγ pairs at hadron colliders, Nucl. Phys.B 531 (1998) 3 [hep-ph/9803250] [SPIRES].
[60] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs boson production in association with a single bottom quark, Phys. Rev.D 67 (2003) 095002 [hep-ph/0204093] [SPIRES].
[61] S.-h. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider, Phys. Rev.D 67 (2003) 075006 [hep-ph/0112109] [SPIRES].
[62] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [SPIRES].
[63] C. Weydert et al., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J.C 67 (2010) 617 [arXiv:0912.3430] [SPIRES].
[64] L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated \(t\bar{t}h\) production at the Tevatron, Phys. Rev.D 65 (2002) 053017 [hep-ph/0109066] [SPIRES]. · Zbl 0864.70012
[65] S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev.D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].
[66] W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett.87 (2001) 201805 [hep-ph/0107081] [SPIRES].
[67] W. Beenakker et al., NLO QCD corrections to \(t\bar{t}h\) production in hadron collisions. ((U)), Nucl. Phys.B 653 (2003) 151 [hep-ph/0211352] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.