zbMATH — the first resource for mathematics

A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. (English) Zbl 1296.74098
Summary: Phase-field models based on the variational formulation for brittle fracture have recently been gaining popularity. These models have proven capable of accurately and robustly predicting complex crack behavior in both two and three dimensions. In this work we propose a fourth-order model for the phase-field approximation of the variational formulation for brittle fracture. We derive the thermodynamically consistent governing equations for the fourth-order phase-field model by way of a variational principle based on energy balance assumptions. The resulting model leads to higher regularity in the exact phase-field solution, which can be exploited by the smooth spline function spaces utilized in isogeometric analysis. This increased regularity improves the convergence rate of the numerical solution and opens the door to higher-order convergence rates for fracture problems. We present an analysis of our proposed theory and numerical examples that support this claim. We also demonstrate the robustness of the model in capturing complex three-dimensional crack behavior.

74R10 Brittle fracture
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI
[1] Ambrosio, L.; Tortorelli, V. M., On the approximation of free discontinuity problems, Boll. Unione Mat. Ital. B (7), 6, 1, 105-123, (1992) · Zbl 0776.49029
[2] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229, (2009) · Zbl 1426.74257
[3] Babuška, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Eng., 40, 4, 727-758, (1997) · Zbl 0949.65117
[4] Bellettini, G.; Coscia, A., Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., 15, 3-4, 201-224, (1994) · Zbl 0806.49002
[5] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. Numer. Methods Eng., 87, 1-5, 15-47, (2011) · Zbl 1242.74097
[6] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217-220, 77-95, (2012) · Zbl 1253.74089
[7] Bourdin, B., Image segmentation with a finite element method, ESAIM: Math. Model. Numer. Anal., 33, 2, 229-244, (1999) · Zbl 0947.65075
[8] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 3, 411-430, (2007) · Zbl 1130.74040
[9] Bourdin, B.; Francfort, G. A.; Marigo, J-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826, (2000) · Zbl 0995.74057
[10] Bourdin, B.; Francfort, G. A.; Marigo, J-J., The variational approach to fracture, J. Elast., 91, 1-3, 5-148, (2008) · Zbl 1176.74018
[11] Bourdin, B.; Larsen, C.; Richardson, C., A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168, 2, 133-143, (2011) · Zbl 1283.74055
[12] Braides, A., Approximation of free-discontinuity problems, (1998), Springer Berlin · Zbl 0909.49001
[13] Burke, S.; Ortner, C.; Süli, E., An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 3, 980-1012, (2010) · Zbl 1305.74080
[14] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 20-22, 2899-2938, (1996) · Zbl 0929.74101
[15] Chambolle, A., An approximation result for special functions with bounded deformation, J. Math. Pures Appl., 83, 7, 929-954, (2004) · Zbl 1084.49038
[16] de Giorgi, E., Some remarks on \(\operatorname{\Gamma}\)-convergence and least squares method, (Dal Maso, G.; Dell’Antonio, G. F., Composite Media and Homogenization Theory, (1991), Birkhäuser Boston), 135-142 · Zbl 0747.49008
[17] Del Piero, G.; Lancioni, G.; March, R., A variational model for fracture mechanics: numerical experiments, J. Mech. Phys. Solids, 55, 12, 2513-2537, (2007) · Zbl 1166.74413
[18] Esedoglu, S.; March, R., Segmentation with depth but without detecting junctions, J. Math. Imag. Vision, 18, 7-15, (2002) · Zbl 1033.68132
[19] Francfort, G. A.; Marigo, J-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342, (1998) · Zbl 0966.74060
[20] Giacomini, A., Ambrosio-tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Differ. Equ., 22, 2, 129-172, (2005) · Zbl 1068.35189
[21] Giovanni, A., Variational models for phase transitions, an approach via \(\operatorname{\Gamma}\)-convergence, (Buttazzo, G.; Marino, A.; Murthy, M. K.V., Calculus of Variations and Partial Differential Equations, Topics on Geometrical Evolution Problems and Degree Theory, (2000), Springer-Verlag Berlin-Heidelberg), 95-114
[22] Hofacker, M.; Miehe, C., A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns, Int. J. Numer. Methods Eng., 93, 3, 276-301, (2013) · Zbl 1352.74022
[23] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY · Zbl 1191.74002
[24] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195, (2005) · Zbl 1151.74419
[25] Lancioni, G.; Royer-Carfagni, G., The variational approach to fracture mechanics. A practical application to the French panthéon in Paris, J. Elast., 95, 1, 1-30, (2009) · Zbl 1166.74029
[26] Larsen, C. J., Models for dynamic fracture based on griffith’s criterion, (Hackl, K., IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, vol. 21, (2010), Springer Netherlands), 131-140
[27] Larsen, C. J.; Ortner, C.; Süli, E., Existence of solutions to a regularized model of dynamic fracture, Math. Methods Models Appl. Sci., 20, 7, 1021-1048, (2010) · Zbl 1425.74418
[28] Loreti, P.; March, R., Propagation of fronts in a nonlinear fourth order equation, Eur. J. Appl. Math., 11, 2, 203-213, (2000) · Zbl 0960.49030
[29] March, R.; Dozio, M., A variational method for the recovery of smooth boundaries, Image Vision Comput., 15, 9, 705-712, (1997)
[30] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 45-48, 2765-2778, (2010) · Zbl 1231.74022
[31] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., 83, 10, 1273-1311, (2010) · Zbl 1202.74014
[32] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 1, 131-150, (1999) · Zbl 0955.74066
[33] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 5, 577-685, (1989) · Zbl 0691.49036
[34] Remmers, J. J.C.; de Borst, R.; Needleman, A., A cohesive segments method for the simulation of crack growth, Comput. Mech., 31, 1, 69-77, (2003) · Zbl 1038.74679
[35] Scherzinger, W. M.; Dohrmann, C. R., A robust algorithm for finding the eigenvalues and eigenvectors of \(3 \times 3\) symmetric matrices, Comput. Methods Appl. Mech. Eng., 197, 45-48, 4007-4015, (2008) · Zbl 1197.65037
[36] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Eng., 249-252, 116-150, (2012) · Zbl 1348.65055
[37] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Eng., 88, 2, 126-156, (2011) · Zbl 1242.65243
[38] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Int. J. Numer. Methods Eng., 96, 1, 43-62, (2013) · Zbl 1352.74029
[39] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Eng., 200, 49-52, 3554-3567, (2011) · Zbl 1239.65013
[40] Xu, X.-P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 9, 1397-1434, (1994) · Zbl 0825.73579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.