×

zbMATH — the first resource for mathematics

Acoustic isogeometric boundary element analysis. (English) Zbl 1296.65175
Summary: An isogeometric boundary element method based on T-splines is used to simulate acoustic phenomena. We restrict our developments to low-frequency problems to establish the fundamental properties of the proposed approach. Using T-splines, the computer aided design (CAD) and boundary element analysis are integrated without recourse to geometry clean-up or mesh generation. A regularized Burton-Miller formulation is used resulting in integrals which are at most weakly singular. We employ a collocation-based approach to generate the linear system of equations. The method is verified against closed-form solutions and direct comparisons are made with conventional Lagrangian discretizations. It is demonstrated that the superior accuracy of the isogeometric approach emanates from the exact geometric description encapsulated in the T-spline. The method is then applied to a real-world application to illustrate the potential for integrated engineering design and analysis.

MSC:
65N38 Boundary element methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
Software:
Gmsh
PDF BibTeX Cite
Full Text: DOI
References:
[1] Sommerfeld, A., Partial Differential Equations in Physics, (1949), Academic Press
[2] Enquist, B.; Majda, A., Absorbing boundary conditions for the numerical solution of waves, Mathematics of Computation, 31, 139, 629-651, (1977) · Zbl 0367.65051
[3] Zienkiewicz, O. C.; Emson, C.; Bettess, P., A novel boundary infinite element, International Journal for Numerical Methods in Engineering, 19, 393-404, (1983) · Zbl 0503.73054
[4] Bettess, P., Infinite elements, (1992), Penshaw Press Sunderland
[5] Astley, R. J., Infinite elements for wave problems: a review of current formulations and assessment of accuracy, International Journal for Numerical Methods in Engineering, 49, 7, 951-976, (2000) · Zbl 1030.76028
[6] Chen, L. H.; Schweikert, D. G., Sound radiation from an arbitrary body, Journal of the Acoustical Society of America, 35, 10, 1626-1632, (1963)
[7] Banaugh, R. P.; Goldsmith, W., Diffraction of steady acoustic waves by surfaces of arbitrary shape, Journal of the Acoustical Society of America, 35, 10, 1590-1601, (1963) · Zbl 0134.44704
[8] Chertock, G., Sound radiation from vibrating surfaces, Journal of the Acoustical Society of America, 36, 7, 1305-1313, (1963)
[9] Greenspan, D.; Werner, P., A numerical method for the exterior Dirichlet problem for the reduced wave equation, Archive for Rational Mechanics and Analysis, 23, 4, 288-316, (1966) · Zbl 0161.12701
[10] Copley, L. G., Integral equation method for radiation from vibrating bodies, Journal of the Acoustical Society of America, 41, 4A, 807-816, (1967)
[11] G.C. Hsiao, W.L. Wendland, Super approximation for boundary integral equations, Tech. Rep. No. 101-A, Applied Mathematics Institute, University of Delaware, 1982.
[12] Wendland, W., Finite Element and Boundary Element Techniques from a Mathematical and Engineering Point of View, (1988), Springer-Verlag · Zbl 0658.00016
[13] Demkowicz, L.; Karafiat, A.; Oden, J. T., Solution of elastic scattering problems in linear acoustics using h-p boundary element method, Computer Methods in Applied Mechanics and Engineering, 101, 251-282, (1992) · Zbl 0778.73081
[14] Geng, P.; Oden, J. T.; Demkowicz, L., Numerical solution and a posteriori error estimation of exterior acoustics problems by a boundary element method at high wave numbers, Journal of the Acoustical Society of America, 100, 1, 335-345, (1996)
[15] Schenck, H. A., Improved integral formulation for acoustic radiation problems, Journal of the Acoustical Society of America, 44, 1, 41-58, (1968) · Zbl 0187.50302
[16] Burton, A. J.; Miller, G. F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proceedings of the Royal Society: A, 323, 201-210, (1971) · Zbl 0235.65080
[17] Jones, D. S., Integral equations for the exterior acoustic problem, Quarterly Journal of Mechanics and Applied Mathematics, 27, 129-142, (1974) · Zbl 0281.45006
[18] Kleinman, R. E.; Roach, G. F.; Schuetz, L. S.; Shirron, J., An iterative solution to acoustic scattering by rigid objects, Journal of the Acoustical Society of America, 84, 1, 385-391, (1988)
[19] Arden, S.; Chandler-Wilde, S. N.; Langdon, S., A collocation method for high frequency scattering by convex polygons, Journal of Computational and Applied Mathematics, 204, 334-343, (2007) · Zbl 1350.76040
[20] Chandler-Wilde, S. N.; Langdon, S.; Ritter, L., A high-wave number boundary-element method for an acoustic scattering problem, Philosophical Transactions of the Royal Society of London, Series A, 362, 1816, 647-671, (2004) · Zbl 1073.78012
[21] J.M. Melenk, S. Langdon, An hp-BEM for high frequency scattering by convex polygons, in: Proceedings of WAVES2007, University of Reading, 2007.
[22] Perrey-Debain, E.; Lagrouche, O.; Bettess, P.; Trevelyan, J., Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering, Philosophical Transactions of the Royal Society of London, Series A, 362, 1816, 561-577, (2004) · Zbl 1073.78016
[23] Chandler-Wilde, S. N.; Graham, I. G., Highly Oscillatory Problems, (2009), Cambridge University Press, pp. 154-193
[24] T. Abboud, J.C. Nedéléc, B. Zhou, Improvement of the integral equation method for high-frequency problems, in: Proceedings of 3rd International Conference on Mathematical Aspects of Wave Propogation Problems (SIAM Philadelphia), 1995.
[25] Carrier, J.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm for particle simulations, SIAM Journal of Scientific and Statistical Computing, 9, 4, 669-686, (1988) · Zbl 0656.65004
[26] Bruno, O. P.; Kunyansky, L. A., A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, Journal of Computational Physics, 169, 1, 80-110, (2001) · Zbl 1052.76052
[27] Shen, L.; Liu, Y. J., An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation, Computational Mechanics, 40, 3, 461-472, (2007) · Zbl 1176.76083
[28] Darve, E.; Havé, P., Efficient fast multipole method for low-frequency scattering, Journal of Computational Physics, 197, 1, 341-363, (2004) · Zbl 1073.65133
[29] Banjal, L.; Hackbusch, W., Hierarchial matrix techniques for low- and high-frequency Helmholtz problems, IMA Journal of Numerical Analysis, 2008, 28, 1, (2008)
[30] Brancati, A.; Aliabadi, M. H.; Benedetti, I., Hierarchical adaptive cross approximation GMRES technique for solution of acoustic problems using the boundary element method, Computer Modelling in Engineering and Sciences, 43, 2, 149-172, (2009) · Zbl 1232.65158
[31] Ushatov, R.; Power, H.; Silva, J. J.R., Uniform bicubic B-splines applied to boundary-element formulation for 3-D scalar problems, Engineering Analysis with Boundary Elements, 13, 4, 371-381, (1994)
[32] Liggett, J. A.; Salmon, J. R., Cubic spline boundary elements, International Journal for Numerical Methods in Engineering, 17, 4, 543-556, (1981) · Zbl 0466.76093
[33] Cabral, J. J.S. P.; Wrobel, L. C.; Brebbia, C. A., A BEM formulation using B-splines. 1. uniform blending function, Engineering Analysis with Boundary Elements, 7, 3, 136-144, (1990)
[34] Cabral, J. J.S. P.; Wrobel, L. C.; Brebbia, C. A., A BEM formulation using B-splines. 2. multiple knots and nonuniform blending functions, Engineering Analysis with Boundary Elements, 8, 1, 51-55, (1991)
[35] Turco, E.; Aristodemo, M., A three-dimensional B-spline boundary element, Computer Methods in Applied Mechanics and Engineering, 155, 1-2, 119-128, (1998) · Zbl 0960.74074
[36] H.D. Maniar, A three dimensional higher-order panel method based on B-splines, Ph.D. Thesis.
[37] Qui, W.; Hsiung, C. C., A panel-free method for time-domain analysis of the radiation problem, Ocean Engineering, 29, 12, 1555-1567, (2002)
[38] L.L. Erickson, Panel method - an introduction, Tech. Rep., NASA Technical Paper 2995, 1990.
[39] Cervera, E.; Trevelyan, J., Evolutionary structural optimisation based on boundary representation of NURBS: part I: 2D algorithms, Computers and Structures, 23-24, 83, 1902-1916, (2005)
[40] Cervera, E.; Trevelyan, J., Evolutionary structural optimisation based on boundary representation of NURBS: part II: 3D algorithms, Computers and Structures, 23-24, 83, 1917-1929, (2005)
[41] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Computer Methods in Applied Mechanics and Engineering, 254, 197-221, (2013) · Zbl 1297.74156
[42] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195, (2005) · Zbl 1151.74419
[43] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Computer Methods in Applied Mechanics and Engineering, 209-212, 87-100, (2012) · Zbl 1243.74193
[44] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Computer Aided Design, 43, 11, 1427-1437, (2011)
[45] Belibassakis, K. A.; Gerosthathis, T. P.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Ginnis, A. I.; Feurer, C., A BEM-ISOGEOMETRIC method for the ship wave-resistance problem, Journal of Ocean Engineering, 60, 53-67, (2013)
[46] C. Politis, A.I. Ginnis, P.D. Kaklis, K. Belibassakis, C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, in: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM’09, 2009, pp. 349-354.
[47] K.A. Belibassakis, T.P. Gerosthathis, K.V. Kostas, C.G. Politis, P.D. Kaklis, A.I. Ginnis, C. Feurer, A BEM-isogeometric method with application to the wavemaking resistance problem of ships at constant speed, in: Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2011, June 19-24, 2011, Rotterdam, The Netherlands.
[48] A.I. Ginnis, K.V. Kostas, C. Feurer, K.A. Belibassakis, T.P. Gerostathis, C.G. Politis, P. Kaklis, A CATIA ship-parametric model for isogeometric hull optimization with respect to wave resistance, in: ICCAS 2011 Trieste 20-22 September proceedings, Italy, 2011.
[49] Peake, M.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Computer Methods in Applied Mechanics and Engineering, 259, 93-102, (2013) · Zbl 1286.65176
[50] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Computer Methods in Applied Mechanics and Engineering, 199, 5-8, 229-263, (2010) · Zbl 1227.74123
[51] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccs, ACM Transactions on Graphics, 22, 477-484, (2003)
[52] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Computer Methods in Applied Mechanics and Engineering, 199, 23-24, 1437-1445, (2010) · Zbl 1231.65027
[53] Li, X.; Scott, M. A.; Sederberg, T. W., Analysis-suitable T-splines: characterization, refineability and approximation, Mathematical Models and Methods in Applied Sciences, (2013), accepted for publication, http://dx.doi.org/10.1142/S0218202513500796
[54] Schillinger, D.; Dedé, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Computer Methods in Applied Mechanics and Engineering, 249-252, 116-150, (2012) · Zbl 1348.65055
[55] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Computer Methods in Applied Mechanics and Engineering, 213, 206-222, (2012) · Zbl 1243.65030
[56] Sederberg, T. W.; Cardon, D. L.; Finnigan, G. T.; North, N. S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM Transactions on Graphics, 23, 276-283, (2004)
[57] Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M. C.; Scott, M. A.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, International Journal for Numerical Methods in Engineering, 83, 765-785, (2010) · Zbl 1197.74177
[58] Bazilevs, Y.; Hsu, M. C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Computer Methods in Applied Mechanics and Engineering, 249-252, 28-41, (2012) · Zbl 1348.74094
[59] A. Buffa, G. Sangalli, R. Vazquez, Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations.arXiv:1209.2048 (arXiv preprint). · Zbl 1351.78036
[60] Verhoosel, C. V.; Scott, M. A.; de Borst, R.; Hughes, T. J.R., An isogeometric approach to cohesive zone modeling, International Journal for Numerical Methods in Engineering, 87, 336-360, (2011) · Zbl 1242.74169
[61] Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; de Borst, R., An isogeometric analysis approach to gradient damage models, International Journal for Numerical Methods in Engineering, 86, 115-134, (2011) · Zbl 1235.74320
[62] Borden, M. J.; Scott, M. A.; Verhoosel, C. V.; Landis, C. M.; Hughes, T. J.R., A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, 217, 77-95, (2012) · Zbl 1253.74089
[63] Dimitri, R.; Lorenzis, L. D.; Scott, M. A.; Wriggers, P.; Taylor, R.; Zavarise, G., Isogeometric large deformation frictionless contact using T-splines, Computer Methods in Applied Mechanics and Engineering, (2013), accepted for publication · Zbl 1296.74071
[64] Morse, P. M.; Ingard, K. U., Theoretical Acoustics, (1968), McGraw-Hill Book Company
[65] Meyer, W. L.; Bell, W. A.; Stallybrass, M. P.; Zinn, B. T., Prediction of the sound field radiated from axisymmetric surfaces, Journal of the Acoustical Society of America, 65, 631-638, (1979) · Zbl 0396.76059
[66] Liu, Y. J.; Rudolphi, T. J., Some identities for fundamental-solutions and their applications to weakly-singular boundary element formulations, Engineering Analysis with Boundary Elements, 8, 6, 301-311, (1991)
[67] Liu, Y.; Chen, S., A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with \(C^0\) boundary elements, Computer Methods in Applied Mechanics and Engineering, 173, 3-4, 375-386, (1999) · Zbl 0946.76051
[68] M.A. Scott, T-splines as a Design-Through-Analysis technology, Ph.D. Thesis, The University of Texas at Austin, 2011.
[69] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, International Journal for Numerical Methods in Engineering, 88, 126-156, (2011) · Zbl 1242.65243
[70] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, International Journal for Numerical Methods in Engineering, 87, 15-47, (2011) · Zbl 1242.74097
[71] Hughes, T. J.R., The Finite Element Method, (2000), Dover Publications
[72] Pierce, A. D., Acoustics: an introduction to its physical principles and applications, (1989), Acoustical Society of America Melville, NY
[73] Liu, Y., Fast Multipole Boundary Element Method: Theory and Applications in Engineering, (2009), Cambridge University Press
[74] Geuzaine, C.; Remacle, J., Gmsh: A 3-D finite element mesh generator with build-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 11, 1309-1331, (2009) · Zbl 1176.74181
[75] Seybert, A. F.; Soenarko, B.; Rizzo, F. J.; Shippy, D. J., An advanced computational method for radiation and scattering of acoustic-waves in 3 dimensions, Journal of the Acoustical Society of America, 77, 2, 362-368, (1985) · Zbl 0574.73038
[76] Hwang, H. S., Hypersingular boundary integral equations for exterior acoustic analysis, Journal of the Acoustical Society of America, 101, 6, 3336-3342, (1997)
[77] Hickling, R.; Wang, N. M., Scattering of sound by a rigid movable sphere, Journal of the Acoustical Society of America, 39, 276-279, (1966)
[78] Piegl, L.; Tiller, W., The NURBS book, (1997), Springer-Verlag New York · Zbl 0868.68106
[79] Fahy, F. J., Sound intensity, (2002), Taylor Francis
[80] ISO 9614: Acoustics - Determination of sound power levels of noise sources using sound intensity, ISO, Geneva, Switzerland.
[81] ISO 11205: Acoustics - Noise emitted by machinery and equipment - Engineering method for the determination of emission sound pressure levels in situ at the work station and at other specified positions using sound intensity, ISO, Geneva, Switzerland.
[82] Jacobsen, F.; de Bree, H.-E., A comparison of two different sound intensity measurement principles, The Journal of the Acoustical Society of America, 118, 3, 1510-1517, (2005)
[83] Pascal, J.-C.; Li, J.-F., A systematic method to obtain 3d finite-difference formulations for acoustic intensity and other energy quantities, Journal of Sound and Vibration, 310, 4-5, 1093-1111, (2008)
[84] Becker, A. A., The Boundary Element Method in Engineering, (1992), McGraw-Hill Book Company
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.