×

zbMATH — the first resource for mathematics

An augmented-Lagrangian method for the phase-field approach for pressurized fractures. (English) Zbl 1296.65170
Summary: In the modeling of pressurized fractures using phase-field approaches, the irreversibility of crack growth is enforced through an inequality constraint on the temporal derivative of the phase-field function. In comparison to the classical case in elasticity, the presence of the pressure requires the additional constraint and makes the problem much harder to analyze. After temporal discretization, this induces a minimization problem in each time step over a solution dependent admissible set. To avoid solving the resulting variational inequality corresponding to the first order necessary conditions, a penalization approach is used, commonly, to remove the inequality constraint. It is well-known that for large penalty parameters the algorithm suffers from numerical instabilities in the solution process. Consequently, to avoid such a drawback, we propose an augmented Lagrangian algorithm for the discrete in time and continuous in space phase-field problems. The final set of equations is solved in a decoupled fashion. The proposed method is substantiated with several benchmark and prototype tests in two and three dimensions.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F99 Coupling of solid mechanics with other effects
Software:
deal.ii
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Griffith, A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London, 221, 163-198, (1921)
[2] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131-150, (1999) · Zbl 0955.74066
[3] Babuska, I.; Belenk, J., The partition of unity method, Int. J. Numer. Methods Eng., 40, 727-758, (1997) · Zbl 0949.65117
[4] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342, (1998) · Zbl 0966.74060
[5] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826, (2000) · Zbl 0995.74057
[6] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture, J. Elast., 91, 1-148, (2008) · Zbl 1176.74018
[7] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations, Int. J. Numer. Methods Eng., 83, 1273-1311, (2013) · Zbl 1202.74014
[8] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 2765-2778, (2010) · Zbl 1231.74022
[9] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217, 77-95, (2012) · Zbl 1253.74089
[10] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int. J. Fract., 178, 113-129, (2012)
[11] A. Mikelić, M. Wheeler, T. Wick, A quasi-static phase-field approach to the fluid filled fracture, 2013, ICES Report 13-22.
[12] Lecampion, B.; Detournay, E., An implicit algorithm for the propagation of hydraulic fracture with a fluid lag, Comput. Methods Appl. Mech. Eng., 196, 4863-4880, (2007) · Zbl 1173.74383
[13] Schrefler, B. A.; Secchi, S.; Simoni, L., On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Methods Appl. Mech. Eng., 195, 444-461, (2006) · Zbl 1193.74158
[14] Carrier, B.; Granet, S., Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312-328, (2012)
[15] Irzal, F.; Remmers, J. J.; Huyghe, J. M.; de Borst, R., A large deformation formulation for fluid flow in a progressively fracturing porous material, Comput. Methods Appl. Mech. Eng., 256, 29-37, (2013) · Zbl 1352.76113
[16] B. Ganis, M. Mear, A. Sakhaee-Pour, M. F. Wheeler, T. Wick, Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method, Computational Geosciences, accepted for publication, http://dx.doi.org/10.1007/s10596-013-9396-5. · Zbl 1392.76078
[17] S. Castonguay, M. Mear, R. Dean, J. Schmidt, Predictions of the growth of multiple interacting hydraulic fractures in three dimensions, SPE-166259-MS (2013) 1-12.
[18] B. Bourdin, C. Chukwudozie, K. Yoshioka, A variational approach to the numerical simulation of hydraulic fracturing, SPE Journal, Conference Paper 159154-MS (2012).
[19] A. Mikelić, M. Wheeler, T. Wick, A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium, 2013, ICES Report 13-15.
[20] Lootsma, F. A., Hessian matrices of penalty functions for solving constrained-optimization problems, Philips Res. Rep., 24, 322-330, (1969) · Zbl 0237.90048
[21] Murray, W., Analytical expressions for the eigenvalues and eigenvectors of the Hessian matrices of barrier and penalty functions, J. Optim. Theory Appl., 7, 189-196, (1971) · Zbl 0198.52504
[22] Hestenes, M. R., Multiplier and gradient methods, J. Optim. Theory Appl., 4, 303-320, (1969) · Zbl 0174.20705
[23] Powell, M. J.D., A method for nonlinear constraints in minimization problems, (Optimization (Sympos., Univ. Keele, Keele, 1968), (1969), Academic Press), 283-298
[24] Fortin, M.; Glowinski, R., Augmented Lagrangian methods: applications to the numerical solution of boundary value problems, Stud. Math. Appl., 15, (1983) · Zbl 0525.65045
[25] Glowinski, R.; Tallec, P. L., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Stud. Appl. Math., 9, (1989) · Zbl 0698.73001
[26] Ito, K.; Kunisch, K., Lagrange multiplier approach to variational problems and applications, Advances in Design and Control, vol. 15, (2008), Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1156.49002
[27] Glowinski, R.; Quaini, A., On an inequality of C. sundberg: a computational investigation via nonlinear programming, J. Optim. Theory Appl., 158, 739-772, (2013) · Zbl 1276.49021
[28] Bourdin, B., Image segmentation with a finite element method, M2AN, 33, 229-244, (1999) · Zbl 0947.65075
[29] Sneddon, I. N.; Lowengrub, M., Crack problems in the classical theory of elasticity, SIAM Series in Applied Mathematics, (1969), John Wiley and Sons Philadelphia · Zbl 0201.26702
[30] Wick, T., Flapping and contact fsi computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., (2013) · Zbl 1309.74026
[31] Wick, T., Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.ii library, Arch. Numer. Softw., 1, 1-19, (2013)
[32] W. Bangerth, T. Heister, G. Kanschat, et al., Differential equations analysis library, 2012.
[33] Sneddon, I. N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. London A, 187, 229-260, (1946)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.