Discussion: Statistical models and methods for dependence in insurance data. (English) Zbl 1296.62203

Concerns [S. Haug et al., ibid. 40, No. 2, 125–139 (2011; Zbl 1296.62205)].


62P05 Applications of statistics to actuarial sciences and financial mathematics
62H12 Estimation in multivariate analysis
62H15 Hypothesis testing in multivariate analysis
62H20 Measures of association (correlation, canonical correlation, etc.)
91B30 Risk theory, insurance (MSC2010)


Zbl 1296.62205
Full Text: DOI


[1] Ben Ghorbal, N.; Genest, C.; Nešlehová, J., On the ghoudi, khoudraji, and rivest test for extreme-value dependence, The Canadian journal of statistics, 37, 534-552, (2009) · Zbl 1191.62083
[2] Bücher, A., Dette, H., & Volgushev, S. (2010). New estimators of the Pickands dependence function and a test for extreme-value dependence. Working paper, Ruhr Universität Bochum, Germany.
[3] Chavez-Demoulin, V.; Embrechts, P., Revisiting the edge, ten years on, Communications in statistics. theory and methods, 39, 1674-1688, (2010) · Zbl 1197.60048
[4] Denuit, M.; Lambert, P., Constraints on concordance measures in bivariate discrete data, Journal of multivariate analysis, 93, 40-57, (2005) · Zbl 1095.62065
[5] Genest, C.; Favre, A.-C., Everything you always wanted to know about copula modeling but were afraid to ask, Journal of hydrologic engineering, 12, 347-368, (2007)
[6] Genest, C.; Ghoudi, K.; Rivest, L.-P., Comment on the paper by E.W. frees and E.A. valdez entitled understanding relationships using copulas, North American actuarial journal, 2, 143-149, (1998)
[7] Genest, C.; Kojadinovic, I.; Nešlehová, J.; Yan, J., A goodness-of-fit test for extreme-value copulas, Bernoulli, 17, 253-275, (2011) · Zbl 1284.62331
[8] Genest, C.; Masiello, E.; Tribouley, K., Estimating copula densities through wavelets, Insurance: mathematics & economics, 44, 170-181, (2009) · Zbl 1167.91015
[9] Genest, C.; Nešlehová, J., A primer on copulas for count data, Astin bulletin, 37, 475-515, (2007) · Zbl 1274.62398
[10] Genest, C.; Rémillard, B., Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, Annales de I’institut Henri Poincaré probabilités et statistiques, 44, 1096-1127, (2008) · Zbl 1206.62044
[11] Genest, C.; Segers, J., Rank-based inference for bivariate extreme-value copulas, The annals of statistics, 37, 2990-3022, (2009) · Zbl 1173.62013
[12] Ghoudi, K.; Khoudraji, A.; Rivest, L.-P., Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles, The Canadian journal of statistics, 26, 187-197, (1998) · Zbl 0899.62071
[13] Guillotte, S.; Perron, F., A Bayesian estimator for the dependence function of a bivariate extreme-value distribution, The Canadian journal of statistics, 36, 383-396, (2008) · Zbl 1153.62045
[14] Guillotte, S., Perron, F., & Segers, J. (2011). Nonparametric Bayesian inference on bivariate extremes. Journal of the Royal Statistical Society Ser. B, 73 (in press). · Zbl 1411.62126
[15] Kojadinovic, I.; Yan, J., Nonparametric rank-based tests of bivariate extreme-value dependence, Journal of multivariate analysis, 101, 2234-2249, (2010) · Zbl 1201.62056
[16] Liebscher, E., Construction of asymmetric multivariate copulas, Journal of multivariate analysis, 99, 2234-2250, (2008), [Correction in vol. 102 (2011), pp. 869-870] · Zbl 1151.62043
[17] Mesfioui, M.; Tajar, A., On the properties of some nonparametric concordance measures in the discrete case, Journal of nonparametric statistics, 17, 541-554, (2005) · Zbl 1135.60303
[18] Nešlehová, J., On rank correlation measures for non-continuous random variables, Journal of multivariate analysis, 98, 544-567, (2007) · Zbl 1107.62047
[19] Quessy, J.-F. (2011). Testing for bivariate extreme dependence using Kendall’s process. Scandinavian Journal of Statistics, 38 (in press).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.