×

zbMATH — the first resource for mathematics

Exponential growth model: from horizontal to linear asymptote. (English) Zbl 1296.62140
Summary: We present a smooth function that can be used as regression curve for modeling growth phenomena requiring an increasing curvilinear concave asymptote. This model is obtained as the product of a concave asymptotic curve and the exponential model. In addition to its increasing character with a curvilinear asymptote, including horizontal or linear increasing asymptote, the resulting model provides curves with a single inflection point. Numerical examples are presented.
MSC:
62J02 General nonlinear regression
65D10 Numerical smoothing, curve fitting
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1086/401873
[2] DOI: 10.1111/j.1745-5871.2007.00457.x
[3] DOI: 10.1080/02626660109492838
[4] DOI: 10.1007/BF01582221 · Zbl 0842.90106
[5] DOI: 10.1137/0806023 · Zbl 0855.65063
[6] Dubeau F., Mathematical Modelling and Applied Computing 2 pp 269– (2011)
[7] Dubeau F., Mathematical Modelling and Applied Computing 2 pp 283– (2011)
[8] DOI: 10.1504/IJHST.2012.047430
[9] DOI: 10.1061/(ASCE)0733-9429(2006)132:5(482)
[10] Huet, S., Jolivet, E., Messéan, A. (1992). La Régression Non Linéaire: Méthodes et Application en Biologie. Paris: INRA.
[11] DOI: 10.3923/ja.2003.223.236
[12] DOI: 10.1002/bimj.4710340705 · Zbl 04510738
[13] Jameson G., Mathematical Gazette 90 pp 223– (2006) · Zbl 05641975
[14] DOI: 10.3844/jmssp.2005.225.233
[15] DOI: 10.1016/j.advwatres.2007.05.002
[16] DOI: 10.1006/jmaa.1993.1361 · Zbl 0797.34006
[17] DOI: 10.1590/S0103-90162011000100016
[18] DOI: 10.1073/pnas.72.11.4327
[19] DOI: 10.1623/hysj.51.3.365
[20] Philip M., Measuring Trees and Forests. 2nd ed. (1994)
[21] Ratkowsky D., Nonlinear Regression Modeling (1983) · Zbl 0572.62054
[22] Ratkowsky D., Handbook of Nonlinear Regression Models (1989) · Zbl 0705.62060
[23] DOI: 10.1139/f81-153
[24] Scitovski R., Economics Analysis 19 pp 65– (1985)
[25] DOI: 10.1002/0471725315
[26] DOI: 10.1016/S0025-5564(02)00096-2 · Zbl 0993.92028
[27] DOI: 10.1061/(ASCE)0733-9496(1999)125:1(48)
[28] DOI: 10.1016/S0378-1127(96)03966-7
[29] DOI: 10.1006/anbo.1996.0334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.