×

zbMATH — the first resource for mathematics

The homogenization of surfaces and boundaries. (English) Zbl 1296.35030
The author briefly discusses the heuristics behind the structure of a couple of classical free-boundary problems for which some kind of homogenization asymptotics can be studied.
MSC:
35J15 Second-order elliptic equations
35R60 PDEs with randomness, stochastic partial differential equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubry, S; Daeron, PY, The discrete Frenkel-Kontorova model and its extensions. I, Exact results for the ground-states. Phys. D, 8, 381-422, (1983) · Zbl 1237.37059
[2] F. Auer. Minimale hyperflächen in riemannsche n-torus. Albert-Ludwigs Univ. thesis (1997).
[3] Bangert, V, On minimal laminationsof the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, 95-138, (1989) · Zbl 0678.58014
[4] Bangert, V., Minimalmeasures andminimizing closed normal one-currents, Geom. Funct. Anal., 9, 413-427, (1999) · Zbl 0973.58004
[5] Caffarelli, LA; Llave, R, Planelikeminimizers in periodicmedia, Comm. Pure Appl. Math., 54, 1403-1441, (2001) · Zbl 1036.49040
[6] Caffarelli, LA; Llave, R, Interfaces of ground states in Ising models with periodic coefficients, J. Stat. Phys., 118, 687-719, (2005) · Zbl 1126.82305
[7] Candel, A; Llave, R, On the aubry-Mather theory in statisticalmechanics, Comm. Math. Phys., 192, 649-669, (1998) · Zbl 0917.46070
[8] Chambolle, A; Thouroude, G, Homogenizationof interfacial energies and construction of plane-likeminimizers in periodic media through a cell problem, Netw. Heterog. Media, 4, 127-152, (2009) · Zbl 1186.35013
[9] Hedlund, GA, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math., 33, 719-739, (1932) · Zbl 0006.32601
[10] Morse, M, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. AMS., 26, 25-60, (1924) · JFM 50.0466.04
[11] Moser, J, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3, 229-272, (1986) · Zbl 0609.49029
[12] Berestycki, H; Hamel, F, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55, 949-1032, (2002) · Zbl 1024.37054
[13] L.A. Caffarelli and K.-A. Lee. Homogenizations of nonvariational viscosity solutions. Preprint (2005).
[14] L.A. Caffarelli and K.-A. Lee. Homogenizationof the osciillating free boundaries: the elliptic case. Preprint (2005).
[15] L.A. Caffarelli and A. Mellet. Capillary drops on an inhomogeneous surface: The horizontal plane. Preprint (2005). · Zbl 1200.76053
[16] Caffarelli, LA; Lee, K-A; Mellet, A, Singular limit and homogenization for flame propagation in periodic excitable media, Arch. Ration.Mech. Anal., 172, 153-190, (2004) · Zbl 1058.76070
[17] Caffarelli, LA; Lee, K-A; Mellet, A, Homogenization and flame propagation in periodic excitable media: the asymptotic speed of propagation, Comm. Pure Appl.Math., 59, 501-525, (2006) · Zbl 1093.35010
[18] Caffarelli, LA; Lee, K-A; Mellet, A, Flame propagation in one-dimensional stationary ergodic media, Math. Models Methods Appl. Sci., 17, 155-169, (2007) · Zbl 1110.76054
[19] Caffarelli, LA; Mellet, A, Capillary drops: contact angle hysteresis and sticking drops, Calc. Var. Partial Differential Equations, 29, 141-160, (2007) · Zbl 1168.76007
[20] Gonzalez, E; Massari, U; Tamanini, I, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., 32, 25-37, (1983) · Zbl 0486.49024
[21] Dussan, V; Chow, R, On the ability of drops or bubbles to stick to nonhorizontal surfaces of solids, J. Fluid Mech., 137, 1-29, (1983) · Zbl 0543.76140
[22] Hall, RR, A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math., 428, 161-176, (1992) · Zbl 0746.52012
[23] Hocking, LM, The wetting of a plane surface by a fluid, Phys. Fluids, 7, 1214-1220, (1995) · Zbl 1023.76501
[24] Hocking, LM, On contact angles in evaporating liquids, Phys. Fluids, 7, 2950-2955, (1995) · Zbl 1026.76562
[25] Huh, C; Mason, SG, Effects of surface roughness on wetting (theoretical), J. Colloid Interface Sci., 60, 11-38, (1977)
[26] Joanny, J-F; Gennes, P-G, A model for contact angle hysteresis, J. Chem. Phys., 81, 552-562, (1984)
[27] Leger, L; Joanny, J-F, Liquid spreading, 431-486, (1992)
[28] Barles, G, Some homogenization results for non-coercive Hamilton-Jacobi equations, Calculus of Variations and Partial Differential Equations, 30, 449-466, (2007) · Zbl 1136.35004
[29] Barles, G; Cesaroni, A; Novaga, M, Homogenizationof fronts in highly heterogeneous media, SIAM J. Math. Anal., 43, 212-227, (2011) · Zbl 1228.35026
[30] Barles, G; Soner, M; Souganidis, PE, Front propagation and phase field theory, SIAM J. Control Optim., 31, 439-469, (1993) · Zbl 0785.35049
[31] Caffarelli, LA; Llave, R, Planelikeminimizers in periodicmedia, Comm. Pure Appl. Math., 54, 1403-1441, (2001) · Zbl 1036.49040
[32] L.A. Caffarelli and R. Monneau. Counterexample in 3-D and homogenization in 2-D. Preprint HAL: hal-00720954 (version 1) (2012).
[33] Cardaliaguet, P; Lions, P-L; Souganidis, PE, A discussion about the homogenization of moving interfaces, J. Math. Pures Appl. (9), 91, 339-363, (2009) · Zbl 1180.35070
[34] Cardaliaguet, P; Nolen, J; Souganidis, PE, Homogenization and enhancement for the G-equation, Arch. Ration. Mech. Anal., 199, 527-561, (2011) · Zbl 1294.35002
[35] P. Cardaliaguet and P.E. Souganidis. Homogenization and enhancement of the Gequation in random environments. Preprint (2011). · Zbl 1284.60126
[36] A. Cesaroni and M. Novaga. Long-time behavior of the mean curvature flow with periodic forcing. Preprint (2011). · Zbl 1288.35071
[37] A. Cesaroni and M. Novaga. Homogenization of mean curvature flow of graphs in periodic media. Preprint (2012). · Zbl 1288.35071
[38] A. Cesaroni, M. Novaga and E. Valdinoci. Curvature flow in heterogeneousmedia. Preprint (2011). · Zbl 1261.35079
[39] Craciun, B; Bhattacharya, K, Effective motion of a curvature-sensitive interface through a heterogeneous medium, Interfaces Free Bound., 6, 151-173, (2004) · Zbl 1061.35148
[40] Dirr, N; Karali, G; Yip, NK, Pulsating wave for Mean curvature flow in inhomogeneous medium, European J. Appl. Math., 19, 661-699, (2008) · Zbl 1185.53076
[41] Evans, LC; Spruck, J, Motion of level sets by Mean curvature. I, J. Differential Geom., 33, 635-681, (1991) · Zbl 0726.53029
[42] Lions, P-L; Souganidis, PE, Homogenizationof degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 667-677, (2005) · Zbl 1135.35092
[43] P.-L. Lions, G. Papanicolaou and S.R.S. Varadhan. Homogenization of Hamilton-Jacobi equations. Preprint. · Zbl 1185.53076
[44] Liu, Y-Y; Xin, J; Yu, Y, Periodic homogenization of G-equations and viscosity effects, Nonlinearity, 23, 2351-2367, (2010) · Zbl 1197.70012
[45] Lou, B; Chen, X, Traveling waves of a curvature flow in almost periodicmedia, Differential Equations, 247, 2189-2208, (2009) · Zbl 1182.35073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.