×

On solutions of linear fractional differential equations with uncertainty. (English) Zbl 1296.34007

Summary: The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method.

MSC:

34A07 Fuzzy ordinary differential equations
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmadian, A.; Suleiman, M.; Salahshour, S.; Baleanu, D., A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Advances in Difference Equations, 2013, article 104, 1-29 (2013) · Zbl 1380.34004 · doi:10.1186/1687-1847-2013-104
[2] Allahviranloo, T.; Ahmadi, M. B., Fuzzy Laplace transforms, Soft Computing, 14, 3, 235-243 (2010) · Zbl 1187.44001 · doi:10.1007/s00500-008-0397-6
[3] Allahviranloo, T.; Salahshour, S.; Abbasbandy, S., Explicit solutions of fractional differential equations with uncertainty, Soft Computing, 16, 2, 297-302 (2012) · Zbl 1259.34009 · doi:10.1007/s00500-011-0743-y
[4] Allahviranloo, T.; Abbasbandy, S.; Salahshour, S.; Hakimzadeh, A., A new method for solving fuzzy linear differential equations, Computing, 92, 2, 181-197 (2011) · Zbl 1238.34005 · doi:10.1007/s00607-010-0136-6
[5] Allahviranloo, T.; Salahshour, S., A new approach for solving first order fuzzy differential equations, Communications in Computer and Information Science, 81, 522-531 (2010) · Zbl 1206.34008
[6] Li, J.; Zhao, A.; Yan, J., The Cauchy problem of fuzzy differential equations under generalized differentiability, Fuzzy Sets and Systems, 200, 1-24 (2012) · Zbl 1263.34007 · doi:10.1016/j.fss.2011.10.009
[7] Salahshour, S.; Allahviranloo, T., Application of fuzzy differential transform method for solving fuzzy Volterra integral equations, Applied Mathematical Modelling, 37, 3, 1016-1027 (2013) · Zbl 1351.45005 · doi:10.1016/j.apm.2012.03.031
[8] Salahshour, S.; Allahviranloo, A., Applications of fuzzy Laplace transforms, Soft Computing, 17, 1, 145-178 (2013) · Zbl 1264.44002 · doi:10.1007/s00500-012-0907-4
[9] Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J. J., Fractional order differential equations on an unbounded domain, Nonlinear Analysis: Theory, Methods & Applications, 72, 2, 580-586 (2010) · Zbl 1179.26015 · doi:10.1016/j.na.2009.06.106
[10] Babenko, Y. I., Heat and Mass Transfer (1986), Leningrad, Russia: Chemia, Leningrad, Russia
[11] Bagley, R. L.; Nishimoto, K., On the fractional order initial value problem and its engineering applications, Fractional Calculus and Its Applications, 12-20 (1990), Tokyo, Japan: College of Engineering, Nihon University, Tokyo, Japan · Zbl 0751.73023
[12] Beyer, H.; Kempfle, S., Definition of physically consistent damping laws with fractional derivatives, Zeitschrift für Angewandte Mathematik und Mechanik, 75, 8, 623-635 (1995) · Zbl 0850.65069 · doi:10.1002/zamm.19950750820
[13] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[14] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[15] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherland: Elsevier Science B.V., Amsterdam, The Netherland · Zbl 1092.45003
[16] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of Fractional Dynamic Systems (2009), Cambridge, UK: Cambridge Scientific, Cambridge, UK · Zbl 1188.37002
[17] Lakshmikantham, V.; Mohapatra, R. N., Theory of Fuzzy Differential Equations and Inclusions. Theory of Fuzzy Differential Equations and Inclusions, Series in Mathematical Analysis and Applications, 6 (2003), London, UK: Taylor & Francis, London, UK · Zbl 1072.34001 · doi:10.1201/9780203011386
[18] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69, 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[19] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods & Applications, 72, 6, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[20] Bede, B.; Gal, S. G., Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151, 3, 581-599 (2005) · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[21] Bede, B.; Rudas, I. J.; Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177, 7, 1648-1662 (2007) · Zbl 1119.34003 · doi:10.1016/j.ins.2006.08.021
[22] Perfilieva, I., Fuzzy transforms: theory and applications, Fuzzy Sets and Systems, 157, 8, 993-1023 (2006) · Zbl 1092.41022 · doi:10.1016/j.fss.2005.11.012
[23] Perfilieva, I.; De Meyer, H.; De Baets, B.; Plšková, D., Cauchy problem with fuzzy initial condition and its approximate solution with the help of fuzzy transform, Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ ’08) · doi:10.1109/FUZZY.2008.4630687
[24] Salahshour, S.; Allahviranloo, T.; Abbasbandy, S.; Baleanu, D., Existence and uniqueness results for fractional differential equations with uncertainty, Advances in Difference Equations, 2012, article 112, 1-12 (2012) · Zbl 1350.34011 · doi:10.1186/1687-1847-2012-112
[25] Mazandarani, M.; Kamyad, A. V., Modified fractional Euler method for solving fuzzy fractional initial value problem, Communications in Nonlinear Science and Numerical Simulation, 18, 1, 12-21 (2013) · Zbl 1253.35208 · doi:10.1016/j.cnsns.2012.06.008
[26] Agarwal, R. P.; Arshad, S.; O’Regan, D.; Lupulescu, V., Fuzzy fractional integral equations under compactness type condition, Fractional Calculus and Applied Analysis, 15, 4, 572-590 (2012) · Zbl 1312.45009 · doi:10.2478/s13540-012-0040-1
[27] Xu, J.; Liao, Z.; Hu, Z., A class of linear differential dynamical systems with fuzzy initial condition, Fuzzy Sets and Systems, 158, 21, 2339-2358 (2007) · Zbl 1128.37015 · doi:10.1016/j.fss.2007.04.016
[28] Friedman, M.; Ma, M.; Kandel, A., Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106, 1, 35-48 (1999) · Zbl 0931.65076 · doi:10.1016/S0165-0114(98)00355-8
[29] Ma, M.; Friedman, M.; Kandel, A., Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105, 1, 133-138 (1999) · Zbl 0939.65086 · doi:10.1016/S0165-0114(97)00233-9
[30] Zimmermann, H.-J., Fuzzy Set Theory and Its Applications (1992), Boston, Mass, USA: Kluwer Academic Publishers, Boston, Mass, USA
[31] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114, 2, 409-422 (1986) · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[32] Wu, H.-C., The improper fuzzy Riemann integral and its numerical integration, Information Sciences, 111, 1-4, 109-137 (1998) · Zbl 0934.26014 · doi:10.1016/S0020-0255(98)00016-4
[33] Anastassiou, G. A., Fuzzy Mathematics: Approximation Theory. Fuzzy Mathematics: Approximation Theory, Studies in Fuzziness and Soft Computing, 251 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1476.41001 · doi:10.1007/978-3-642-11220-1
[34] Anastassiou, G. A., Intelligent Mathematics: Computational Analysis. Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5, xviii+802 (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1231.41001 · doi:10.1007/978-3-642-17098-0
[35] Salahshour, S.; Allahviranloo, T.; Abbasbandy, S., Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1372-1381 (2012) · Zbl 1245.35146 · doi:10.1016/j.cnsns.2011.07.005
[36] Chalco-Cano, Y.; Román-Flores, H., On new solutions of fuzzy differential equations, Chaos, Solitons and Fractals, 38, 1, 112-119 (2008) · Zbl 1142.34309 · doi:10.1016/j.chaos.2006.10.043
[37] Khastan, A.; Nieto, J. J.; Rodríguez-López, R., Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets and Systems, 177, 20-33 (2011) · Zbl 1250.34005 · doi:10.1016/j.fss.2011.02.020
[38] Khastan, A.; Nieto, J. J.; Rodríguez-López, R., Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability, Information Sciences, 222, 544-558 (2013) · Zbl 1293.34005 · doi:10.1016/j.ins.2012.07.057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.