zbMATH — the first resource for mathematics

On realization of generalized effect algebras. (English) Zbl 1296.03038
It is shown that a generalized effect algebra is representable as an operator in the generalized effect algebra of effects of a complex Hilbert space if and only if it has an order-determining set of generalized states.

03G12 Quantum logic
06D35 MV-algebras
06F25 Ordered rings, algebras, modules
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI arXiv
[1] Blank, J.; Exner, P.; Havlíček, M., Hilbert space operators in quantum physics, (2008), Springer · Zbl 1163.47060
[2] H. X. Cao, Z. H. Guo, Z. L. Chen and K. L. Zhang: Representation Theory of Effect Algebras (2012), preprint,
[3] Dvurečenskij, A.; Pulmannová, S., New trends in quantum structures, (2000), Kluwer Dodrecht · Zbl 0987.81005
[4] Engelking, R., General topology, revised and completed edition, (1989), Heldermann Verlag Berlin
[5] Foulis, D.J.; Bennett, M.K., Effect algebras and unsharp quantum logics, Found. phys., 24, 1331-1352, (1994) · Zbl 1213.06004
[6] Greechie, R.J., Another nonstandard quantum logic (and how I found it), (), 71-85
[7] Gudder, S., Effect algebras are not adequate models for quantum mechanics, Found. phys., 40, 1566-1577, (2010) · Zbl 1218.81010
[8] J. Niederle and J. Paseka: On realization of generalized effect algebras (2012), preprint. · Zbl 1274.81010
[9] Paseka, J., PT-symmetry in (generalized) effect algebras, Internat. J. theoret. phys., 50, 1198-1205, (2011) · Zbl 1257.03094
[10] Paseka, J.; Riečanová, Z., Considerable sets of linear operators in Hilbert spaces as operator generalized effect algebras, Found. physics, 41, 1634-1647, (2011) · Zbl 1238.81009
[11] J. Paseka and Z. Riečanová: Inherited properties of effect algebras preserved by isomorphisms, preprint, 2012.
[12] Polakovič, M., Generalized effect algebras of bounded positive operators defined on Hilbert spaces, Rep. math. phys., 68, 241-250, (2011) · Zbl 1250.81014
[13] Polakovič, M.; Riečanová, Z., Generalized effect algebras of positive operators densely defined on Hilbert space, Internat. J. theor. phys., 50, 1167-1174, (2011) · Zbl 1237.81009
[14] Riečanová, Z.; Zajac, M.; Pulmannová, S., Effect algebras of positive operators densely defined on Hilbert space, Rep. math. phys., 68, 261-270, (2011) · Zbl 1250.81015
[15] Riečanová, Z.; Zajac, M., Hilbert space effect-representations of effect algebras, Rep. math. phys., 70, 283-290, (2012) · Zbl 1268.81014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.