×

On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. (English) Zbl 1295.76007

Summary: According to the Helmholtz decomposition, the irrotational parts of the momentum balance equations of the incompressible Navier-Stokes equations are balanced by the pressure gradient. Unfortunately, nearly all mixed methods for incompressible flows violate this fundamental property, resulting in the well-known numerical instability of poor mass conservation. The origin of this problem is the lack of \(L^2\)-orthogonality between discretely divergence-free velocities and irrotational vector fields. Therefore, a new variational crime for the nonconforming Crouzeix-Raviart element is proposed, where divergence-free, lowest-order Raviart-Thomas velocity reconstructions reestablish \(L^2\)-orthogonality. This approach allows to construct a cheap flow discretization for general 2d and 3d simplex meshes that possesses the same advantageous robustness properties like divergence-free flow solvers. In the Stokes case, optimal a priori error estimates for the velocity gradients and the pressure are derived. Moreover, the discrete velocity is independent of the continuous pressure. Several detailed linear and nonlinear numerical examples illustrate the theoretical findings.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics

Software:

Triangle
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acosta, G.; Apel, T.; Durán, R. G.; Lombardi, A. L., Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra, Math. Comput., 80, 273, 141-163 (2011) · Zbl 1223.65086
[2] Acosta, G.; Durán, R. G., The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations, SIAM J. Numer. Anal., 37, 1, 18-36 (1999), (electronic) · Zbl 0948.65115
[3] Apel, T.; Nicaise, S.; Schöberl, J., A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges, IMA J. Numer. Anal., 21, 4, 843-856 (2001) · Zbl 0998.65116
[4] Bowers, A. L.; Cousins, B. R.; Linke, A.; Rebholz, L. G., New connections between finite element formulations of the Navier-Stokes equations, J. Comput. Phys., 229, 24, 9020-9025 (2010) · Zbl 1427.76120
[5] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 4-6, 853-866 (2007) · Zbl 1120.76322
[6] Brandts, J. H., Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68, 3, 311-324 (1994) · Zbl 0823.65103
[8] Brezzi, F.; Fortin, M., Mixed and hybrid finite elements, Springer Series in Computational Mathematics, vol. 15 (1991), Springer
[9] Burman, E.; Linke, A., Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements, Appl. Numer. Math., 58, 11, 1704-1719 (2008) · Zbl 1148.76031
[10] Case, M. A.; Ervin, V. J.; Linke, A.; Rebholz, L. G., A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations, SIAM J. Numer. Anal., 49, 4, 1461-1481 (2011) · Zbl 1244.76021
[11] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 251, 1067-1095 (2005), (electronic) · Zbl 1069.76029
[12] Cockburn, B.; Kanschat, G.; Schötzau, D., A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31, 1-2, 61-73 (2007) · Zbl 1151.76527
[13] Codina, R., Numerical solution of the incompressible Navier-Stokes equations with Coriolis forces based on the discretization of the total time derivative, J. Comput. Phys., 148, 2, 467-496 (1999) · Zbl 0930.76052
[14] Codina, R.; Soto, O., Finite element solution of the Stokes problem with dominating Coriolis force, Comput. Methods Appl. Mech. Engrg., 142, 3-4, 215-234 (1997) · Zbl 0896.76038
[15] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7, R-3, 33-75 (1973) · Zbl 0302.65087
[16] Di Pietro, D. A.; Ern, A., Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin), vol. 69 (2012), Springer: Springer Heidelberg, (Mathematics & Applications) · Zbl 1231.65209
[18] Elman, H.; Silvester, D.; Wathen, A., Finite elements and fast iterative solvers with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation (2005), Oxford University Press: Oxford University Press Oxford · Zbl 1083.76001
[19] Ern, A.; Guermond, J. L., Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159 (2004), Springer-Verlag: Springer-Verlag New York
[21] Evans, J. A.; Hughes, T. J.R., Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math. Models Methods Appl. Sci., 23, 08, 1421-1478 (2013) · Zbl 1383.76337
[22] Falk, R. S.; Neilan, M., Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., 51, 2, 1308-1326 (2013) · Zbl 1268.76032
[23] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 1, 89-129 (1988) · Zbl 0629.73053
[25] Galvin, K. J.; Linke, A.; Rebholz, L. G.; Wilson, N. E., Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech. Engrg., 237/240, 166-176 (2012) · Zbl 1253.76057
[26] Ganesan, S.; John, V., Pressure separation—a technique for improving the velocity error in finite element discretisations of the Navier-Stokes equations, Appl. Math. Comput., 165, 2, 275-290 (2005) · Zbl 1125.76039
[27] Gelhard, T.; Lube, G.; Olshanskii, M.; Starcke, J., Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Math., 177, 243-267 (2005) · Zbl 1063.76054
[28] Gerbeau, J.-F.; Le Bris, C.; Bercovier, M., Spurious velocities in the steady flow of an incompressible fluid subjected to external forces, Int. J. Numer. Methods Fluids, 25, 6, 679-695 (1997) · Zbl 0893.76041
[29] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[30] Girault, V.; Raviart, P.-A., Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin
[31] Gunzburger, M. D., The inf-sup condition in mixed finite element methods with application to the Stokes system, (Collected Lectures on the Preservation of Stability under Discretization (2002), SIAM: SIAM Fort Collins), 93-121 · Zbl 1494.76056
[32] Guzmán, J.; Neilan, M., A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., 32, 4, 1484-1508 (2012) · Zbl 1332.76057
[34] Layton, W., Introduction to the numerical analysis of incompressible viscous flows, Computational Science & Engineering, vol. 6 (2008), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, (With a foreword by Max Gunzburger) · Zbl 1153.76002
[35] Layton, W.; Manica, C. C.; Neda, M.; Olshanskii, M.; Rebholz, L. G., On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comput. Phys., 228, 9, 3433-3447 (2009) · Zbl 1161.76030
[37] Linke, A., Collision in a cross-shaped domain—a steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD, Comput. Methods Appl. Mech. Engrg., 198, 41-44, 3278-3286 (2009) · Zbl 1230.76028
[38] Linke, A., A divergence-free velocity reconstruction for incompressible flows, C.R. Math. Acad. Sci. Paris, 350, 17-18, 837-840 (2012) · Zbl 1303.76106
[39] Linke, A.; Rebholz, L. G.; Wilson, N. E., On the convergence rate of grad-div stabilized Taylor-Hood to Scott-Vogelius solutions for incompressible flow problems, J. Math. Anal. Appl., 381, 2, 612-626 (2011) · Zbl 1331.76038
[40] Olshanskii, M.; Lube, G.; Heister, T.; Löwe, J., Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3975-3988 (2009) · Zbl 1231.76161
[41] Olshanskii, M.; Reusken, A., Grad-div stabilization for Stokes equations, Math. Comput., 73, 248, 1699-1718 (2004) · Zbl 1051.65103
[43] Raviart, P.-A.; Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, (Mathematical aspects of finite element methods. Mathematical aspects of finite element methods, Lecture Notes in Math., vol. 606 (1977), Springer: Springer Berlin), 292-315, (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975)
[44] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, vol. 24 (2008), Springer: Springer Berlin
[45] Shewchuk, J. R., Triangle: engineering a 2d quality mesh generator and delaunay triangulator, (Lin, Ming C.; Manocha, Dinesh, Applied computational geometry: towards geometric engineering. Applied computational geometry: towards geometric engineering, Lecture Notes in Computer Science, vol. 1148 (1996), Springer-Verlag), 203-222, (From the First ACM Workshop on Applied Computational Geometry)
[46] Sohr, H., The Navier-Stokes equations. An elementary functional analytic approach, Modern Birkhäuser Classics (2001), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel, (2013 reprint of the 2001 original, MR1928881) · Zbl 0983.35004
[47] Temam, R., Navier-Stokes Equations (1991), Elsevier: Elsevier North-Holland · Zbl 0572.35083
[48] Turek, S.; Ouazzi, A.; Hron, J., On pressure separation algorithms (PSepA) for improving the accuracy of incompressible flow simulations, Int. J. Numer. Methods Fluids, 59, 4, 387-403 (2009) · Zbl 1192.76027
[49] Vogelius, M., An analysis of the p-version of the finite element method for nearly incompressible materials. uniformly valid, optimal error estimates, Numer. Math., 41, 39-53 (1983) · Zbl 0504.65061
[50] Vogelius, M., A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-version of the finite element method, Numer. Math., 41, 19-37 (1983) · Zbl 0504.65060
[51] Wang, Junping; Ye, Xiu, New finite element methods in computational fluid dynamics by \(H(div)\) elements, SIAM J. Numer. Anal., 45, 3, 1269-1286 (2007), (electronic) · Zbl 1138.76049
[52] Zhang, S., A new family of stable mixed finite elements for the 3d Stokes equations, Math. Comput., 74, 250, 543-554 (2005) · Zbl 1085.76042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.