×

zbMATH — the first resource for mathematics

Variational gradient plasticity at finite strains. II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. (English) Zbl 1295.74014
Summary: The second part of our work (for part I, cf. [ibid. 268, 677–703 (2013; Zbl 1295.74013)]) on variational inelasticity with long-range effects outlines the formulation and finite element implementation of additive finite gradient plasticity in the logarithmic strain space. It is considered to be the most simple approach to finite plasticity, suitable for the purely phenomenological description of polycrystalline metals or amorphous materials, if structures of the geometrically linear theories are defined in the Lagrangian logarithmic strain space. We start from a mixed saddle point principle for metric-type additive plasticity, which is specified for the important model problem of isochoric von Mises plasticity with gradient-extended hardening/softening response. The mixed variational structure includes the hardening/softening variable itself as well as its dual driving force. The numerical implementation exploits the underlying variational structure, yielding a canonical symmetric structure of the monolithic problem. It results in a novel finite element design of the coupled problem incorporating a long-range hardening/softening parameter and its dual driving force. This allows a straightforward local definition of plastic loading-unloading driven by the long-range fields, providing very robust finite element implementations of gradient plasticity. It includes a rational method for the definition of elastic-plastic-boundaries (EPBs) in gradient plasticity along with a postprocessor that defines the plastic variables in the elastic range. We discuss alternative mixed finite element designs of the coupled problem, including a local-global solution strategy of short-and long-range fields. All methods are derived in a rigorous format from variational principles. Numerical benchmarks demonstrated the excellent performance of the proposed mixed variational approach to gradient plasticity in the logarithmic strain space.

MSC:
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics
74N15 Analysis of microstructure in solids
Software:
FEAPpv; Nike2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch. Ration. Mech. Anal., 18, 251-281, (1965) · Zbl 0133.17701
[2] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech. ASME, 36, 1-6, (1969) · Zbl 0179.55603
[3] Rice, J. R., Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455, (1971) · Zbl 0235.73002
[4] Mandel, J., Plasticité clasique et viscoplasticité, (CISM Courses and Lectures, No. 97, (1972), Springer) · Zbl 0285.73018
[5] Kröner, E.; Teodosiu, C., Lattice defect approach to plasticity and viscoplasticity, (Sawzuk, A., Problems in Plasticity, (1972), Nordhoff International Publishing)
[6] Naghdi, P. M., A critical review of the state of finite plasticity, Z. Angew. Math. Phys., 41, 315-387, (1990) · Zbl 0712.73032
[7] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Int. J. Numer. Methods Engrg., 29, 483-514, (1990) · Zbl 0724.73221
[8] Miehe, C., On the representation of Prandtl-reuß-tensors within the framework of multiplicative elasto-plasticity, Int. J. Plast., 10, 609-621, (1994) · Zbl 0810.73016
[9] Simó, J. C., Numerical analysis and simulation of plasticity, (Ciarlet, P.; Lions, L. J., Handbook of Numerical Analysis, (1998), Elsevier Science B.V.) · Zbl 0930.74001
[10] Miehe, C., A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, Comput. Methods Appl. Mech. Engrg., 159, 223-260, (1998) · Zbl 0948.74009
[11] Miehe, C., A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric, Int. J. Solids Struct., 35, 3859-3897, (1998) · Zbl 0935.74022
[12] Papadopoulos, P.; Lu, J., A general framework for the numerical solution of problems in finite elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 159, 1-18, (1998) · Zbl 0954.74068
[13] Papadopoulos, P.; Lu, J., On the formulation and numerical solution of problems in anisotropic finite plasticity, Comput. Methods Appl. Mech. Engrg., 190, 4889-4910, (2001) · Zbl 1001.74020
[14] Miehe, C.; Apel, N.; Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Engrg., 191, 5383-5425, (2002) · Zbl 1083.74518
[15] Miehe, C.; Göktepe, S.; Mendez, J., Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space, Int. J. Solids Struct., 46, 181-202, (2009) · Zbl 1168.74324
[16] Eterovic, A. L.; Bathe, K.-J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measure, Int. J. Numer. Methods Engrg., 30, 1099-1114, (1990) · Zbl 0714.73035
[17] Perić, D.; Owen, D.; Honnor, M., A model for finite strain elasto-plasticity based on logarithmic strains: computational issues, Comput. Methods Appl. Mech. Engrg., 94, 35-61, (1992) · Zbl 0747.73020
[18] Simó, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112, (1992) · Zbl 0764.73089
[19] Cuitino, A. M.; Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics, Engrg. Comput., 9, 437-451, (1992)
[20] C. Miehe, Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids, Comput. Methods Appl. Mech. Engrg. 268 (2013) 677-703. · Zbl 1295.74013
[21] Hall, E. O., The deformation and aging of mild steel. part III: discussion and results, Proc. Phys. Soc. Lond., 64, 747-753, (1951)
[22] Petch, N. J., The cleavage strength of polycrystals, J. Iron Steel Inst., 174, 25-28, (1953)
[23] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Mater., 42, 475-487, (1994)
[24] Arzt, E., Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater., 46, 5611-5626, (1998)
[25] Lasry, D.; Belytschko, T., Localization limiters in transient problems, Int. J. Solids Struct., 24, 581-597, (1988) · Zbl 0636.73021
[26] de Borst, R.; Mühlhaus, H. B., Gradient-dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Engrg., 35, 521-539, (1992) · Zbl 0768.73019
[27] Liebe, T.; Steinmann, P., Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity, Int. J. Numer. Methods Engrg., 51, 1437-1467, (2001) · Zbl 1065.74516
[28] Engelen, R. A.B.; Geers, M. G.D.; Baaijens, F. P.T., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behavior, Int. J. Plast., 19, 403-433, (2003) · Zbl 1090.74519
[29] Mielke, A.; Müller, S., Lower semicontinuity and existence of minimizers in incremental finite-strain plasticity, Z. Angew. Math. Mech., 86, 233-250, (2006) · Zbl 1102.74006
[30] Aifantis, E. C., The physics of plastic deformation, Int. J. Plast., 3, 211-247, (1987) · Zbl 0616.73106
[31] Mühlhaus, H.-B.; Aifantis, E. C., A variational principle for gradient plasticity, Int. J. Solids Struct., 28, 845-857, (1991) · Zbl 0749.73029
[32] Gurtin, M. E., On a framework for small-deformation viscoplasticity: free energy microforces, strain gradients, Int. J. Plast., 19, 47-90, (2003) · Zbl 1032.74521
[33] Forest, S.; Sievert, R., Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mech., 160, 71-111, (2003) · Zbl 1064.74009
[34] Gudmundson, P., A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52, 1379-1406, (2004) · Zbl 1114.74366
[35] Gurtin, M. E.; Anand, L., A theory of strain-gradient plasticity for isotropic plastically irrotational materials. part I: small deformations, J. Mech. Phys. Solids, 53, 1624-1649, (2005) · Zbl 1120.74353
[36] Reddy, B. D.; Ebobisse, F.; McBride, A., Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plast., 24, 55-73, (2008) · Zbl 1139.74009
[37] Fleck, N. A.; Willis, J. R., A mathematical basis for strain-gradient plasticity theory. part I: scalar plastic multiplier, J. Mech. Phys. Solids, 57, 161-177, (2009) · Zbl 1195.74020
[38] Fleck, N. A.; Willis, J. R., A mathematical basis for strain-gradient plasticity theory. part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057, (2009) · Zbl 1173.74316
[39] Liebe, T.; Menzel, A.; Steinmann, P., Theory and numerics of geometrically non-linear gradient plasticity, Int. J. Engrg. Sci., 41, 1603-1629, (2003) · Zbl 1211.74042
[40] McBride, A.; Reddy, D., A discontinuous Galerkin formulation of a model of gradient plasticity at finite strains, Comput. Methods Appl. Mech. Engrg., 198, 1805-1820, (2009) · Zbl 1227.74081
[41] de Borst, R.; Pamin, J., Some novel developments in finite element procedures for gradient-dependent plasticity, Int. J. Numer. Methods Engrg., 39, 2477-2505, (1996) · Zbl 0885.73074
[42] Geers, M. G.D.; Ubachs, R. L.J. M.; Engelen, R. A.B., Strongly nonlocal gradient-enhanced finite strain elastoplasticity, Int. J. Numer. Methods Engrg., 56, 2039-2068, (2003) · Zbl 1038.74527
[43] Geers, M. G.D., Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Comput. Methods Appl. Mech. Engrg., 193, 3377-3401, (2004) · Zbl 1060.74503
[44] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; de Vree, I. H.P., Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Engrg., 39, 3391-3403, (1996) · Zbl 0882.73057
[45] Peerlings, R. H.J.; Massart, T. J.; Geers, M. G.D., A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking, Comput. Methods Appl. Mech. Engrg., 193, 3403-3417, (2004) · Zbl 1060.74508
[46] Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity and damage, J. Engrg. Mech., 135, 117-131, (2009)
[47] Miehe, C.; Aldakheel, F.; Mauthe, S., Mixed variational principles and robust finite element implementations of gradient plasticity at small strains, Int. J. Numer. Methods Engrg., 94, 1037-1074, (2013) · Zbl 1352.74408
[48] Simó, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraints in finite deformation elastoplasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208, (1985) · Zbl 0554.73036
[49] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344, (1984) · Zbl 0593.76039
[50] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag · Zbl 0788.73002
[51] Miehe, C., A theory of large-strain isotropic thermoplasticity based on metric transformation tensors, Arch. Appl. Mech., 66, 45-64, (1995) · Zbl 0844.73027
[52] Miehe, C.; Lambrecht, M., Algorithms for computation of stresses and elasticity moduli in terms of seth-hill’s family of generalized strain tensors, Commun. Numer. Methods Engrg., 17, 337-353, (2001) · Zbl 1049.74011
[53] Miehe, C., A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 898-923, (2011) · Zbl 1270.74022
[54] Simó, J. C.; Hughes, T. J.R., Computational inelasticity, (1998), Springer New York · Zbl 0934.74003
[55] Babuška, I., Error-bounds for finite element method, Numer. Math., 16, 322-333, (1971) · Zbl 0214.42001
[56] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192, (1973) · Zbl 0258.65108
[57] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, revue française d’automatique informatique, recherche opérationnelle, Anal. Numér., 8, 129-151, (1974) · Zbl 0338.90047
[58] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The finite element method: its basis and fundamentals, (2005), Elsevier · Zbl 1307.74005
[59] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Methods Engrg., 37, 1981-2004, (1994) · Zbl 0804.73067
[60] Taylor, R. L., A mixed-enhanced formulation for tetrahedral finite elements, Int. J. Numer. Methods Engrg., 47, 205-227, (2000) · Zbl 0985.74074
[61] Simó, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects, Comput. Methods Appl. Mech. Engrg., 68, 1-31, (1988) · Zbl 0644.73043
[62] J.O. Hallquist, Nike 2D: An implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids, Rept. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1984.
[63] Simó, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386, (1993) · Zbl 0846.73068
[64] Cleveringa, H. H.M.; Van der Giessen, E.; Needleman, A., Comparison of discrete dislocation and continuum plasticity predictions for a composite material, Acta Mater., 45, 3163-3179, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.