×

zbMATH — the first resource for mathematics

High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. (English) Zbl 1295.65088
Summary: We present a class of high order finite volume schemes for the solution of non-conservative hyperbolic systems that combines the one-step ADER-WENO finite volume approach with space-time adaptive mesh refinement (AMR). The resulting algorithm, which is particularly well suited for the treatment of material interfaces in compressible multi-phase flows, is based on: (i) high order of accuracy in space obtained through WENO reconstruction, (ii) a high order one-step time discretization via a local space-time discontinuous Galerkin predictor method, and (iii) the use of a path conservative scheme for handling the non-conservative terms of the equations. The AMR property with time accurate local time stepping, which has been treated according to a cell-by-cell strategy, strongly relies on the high order one-step time discretization, which naturally allows a high order accurate and consistent computation of the jump terms at interfaces between elements using different time steps. The new scheme has been successfully validated on some test problems for the Baer-Nunziato model of compressible multiphase flows.

MSC:
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, Journal of Computational Physics, 125, 150-160, (1996) · Zbl 0847.76060
[2] Abgrall, R.; Karni, S., Computations of compressible multifluids, Journal of Computational Physics, 169, 594-623, (2001) · Zbl 1033.76029
[3] Abgrall, R.; Karni, S., Two-layer shallow water system: a relaxation approach, SIAM Journal on Scientific Computing, 31, 1603-1627, (2009) · Zbl 1188.76229
[4] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, Journal of Computational Physics, 229, 2759-2763, (2010) · Zbl 1188.65134
[5] Abgrall, R.; Saurel, R., Discrete equations for physical and numerical compressible multiphase mixtures, Journal of Computational Physics, 186, 361-396, (2003) · Zbl 1072.76594
[6] Andrianov, N.; Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model, Journal of Computational Physics, 212, 434-464, (2004) · Zbl 1115.76414
[7] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Journal of Multiphase Flow, 12, 861-889, (1986) · Zbl 0609.76114
[8] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, International Journal for Numerical Methods in Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[9] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, 160, 405-452, (2000) · Zbl 0961.65078
[10] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, Journal of Computational Physics, 228, 2480-2516, (2009) · Zbl 1275.76169
[11] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, Journal of Computational Physics, 174, 614-648, (2001) · Zbl 1157.76369
[12] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - speed comparisons with Runge-Kutta methods, Journal of Computational Physics, 235, 934-969, (2013) · Zbl 1291.76237
[13] Batchelor, G. K., An introduction to fluid mechanics, (1974), Cambridge University Press
[14] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM Journal of Scientific Computing, 15, 1, 127-138, (1994) · Zbl 0793.65072
[15] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, 82, 64-84, (1989) · Zbl 0665.76070
[16] Berger, M. J.; Jameson, A., Automatic adaptive grid refinement for the Euler equations, AIAA Journal, 23, 561-568, (1985)
[17] Berger, M. J.; LeVeque, R., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM Journal on Numerical Analysis, 35, 2298-2316, (1998) · Zbl 0921.65070
[18] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, 53, 484, (1984) · Zbl 0536.65071
[19] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P. H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, Journal of Computational Physics, 230, 6664-6687, (2011) · Zbl 1408.65077
[20] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Communications in Computational Physics, 14, 1174-1206, (2013) · Zbl 1388.65075
[21] Breil, J.; Galera, S.; Maire, P. H., Multi-material ALE computation in inertial confinement fusion code CHIC, Computers and Fluids, 46, 161-167, (2011) · Zbl 1433.76190
[22] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, Journal of Computational Physics, 228, 5160-5183, (2009) · Zbl 1168.76029
[23] J.J. Carroll-Nellenback, B. Shroyer, A. Frank, C. Ding, Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR, ArXiv e-prints, December 2011.
[24] Castro, C. E.; Käser, M.; Toro, E. F., Space-time adaptive numerical methods for geophysical applications, Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 367, 4613-4631, (2009) · Zbl 1192.86006
[25] Castro, M. J.; Gallardo, J. M.; López, J. A.; Parés, C., Well-balanced high order extensions of godunov’s method for semilinear balance laws, SIAM Journal of Numerical Analysis, 46, 1012-1039, (2008) · Zbl 1159.74045
[26] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Mathematics of Computations, 75, 1103-1134, (2006) · Zbl 1096.65082
[27] Castro, M. J.; García-Rodríguez, J. A.; González-Vida, J. M.; Macías, J.; Parés, C.; Vázquez-Cendón, M. E., Numerical simulation of two-layer shallow water flows through channels with irregular geometry, Journal of Computational Physics, 195, 202-235, (2004) · Zbl 1087.76077
[28] Castro, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, Journal of Computational Physics, 227, 8107-8129, (2008) · Zbl 1176.76084
[29] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, Journal of Computational Physics, 227, 1567-1596, (2007) · Zbl 1126.76035
[30] Cheng, J. B.; Toro, E. F.; Jiang, S.; Tang, W., A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme, Journal of Computational Physics, 251, 53-80, (2013) · Zbl 1349.65279
[31] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws - multi-dimensional optimal order detection (MOOD), Journal of Computational Physics, 230, 4028-4050, (2011) · Zbl 1218.65091
[32] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, 191, 448-475, (2003) · Zbl 1028.76039
[33] Deledicque, V.; Papalexandris, M. V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, Journal of Computational Physics, 222, 217-245, (2007) · Zbl 1216.76044
[34] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Computers and Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[35] Dreyer, W.; Duderstadt, F.; Hantke, M.; Warnecke, G., Bubbles in liquids with phase transition. part 1. on phase change of a single vapor bubble in liquid water, Continuum Mechanics and Thermodynamics, 24, 461-483, (2012) · Zbl 1258.76160
[36] Dumbser, M., A simple two-phase method for the simulation of complex free surface flows, Computer Methods in Applied Mechanics and Engineering, 200, 1204-1219, (2011) · Zbl 1225.76210
[37] Dumbser, M., A diffuse interface method for complex three-dimensional free surface flows, Computer Methods in Applied Mechanics and Engineering, 257, 47-64, (2013) · Zbl 1286.76099
[38] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, Journal of Computational Physics, 227, 8209-8253, (2008) · Zbl 1147.65075
[39] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Computers and Fluids, 86, 405-432, (2013) · Zbl 1290.76081
[40] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, Journal of Computational Physics, 227, 3971-4001, (2008) · Zbl 1142.65070
[41] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes. II: non-conservative hyperbolic systems, Computer Methods in Applied Mechanics and Engineering, 199, 625-647, (2010) · Zbl 1227.76043
[42] Dumbser, M.; Iben, U.; Munz, C. D., Efficient implementation of high order unstructured WENO schemes for cavitating flows, Computers and Fluids, 86, 141-168, (2013) · Zbl 1290.76098
[43] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221, 693-723, (2007) · Zbl 1110.65077
[44] Dumbser, M.; Käser, M.; A Titarev, V.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, Journal of Computational Physics, 226, 204-243, (2007) · Zbl 1124.65074
[45] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes. V: local time stepping and p-adaptivity, Geophysical Journal International, 171, 695-717, (2007)
[46] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Communications in Computational Physics, 10, 635-671, (2011) · Zbl 1373.76125
[47] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, Journal of Scientific Computing, 48, 70-88, (2011) · Zbl 1220.65110
[48] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, Journal of Computational Physics, 228, 6991-7006, (2009) · Zbl 1261.76028
[49] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, Journal of Computational Physics, 248, 257-286, (2013) · Zbl 1349.76325
[50] Van Der Holst, B., Crash: A block-adaptive-mesh code for radiative shock hydrodynamics - implementation and verification, Astrophysical Journal, Supplement Series, 194, 23, (2011)
[51] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics, 152, 457-492, (1999) · Zbl 0957.76052
[52] Fedkiw, R. P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, Journal of Computational Physics, 154, 393-427, (1999) · Zbl 0955.76071
[53] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new 3D parallel SPH scheme for free surface flows, Computers and Fluids, 38, 1203-1217, (2009) · Zbl 1242.76270
[54] Ferrari, A.; Munz, C. D.; Weigand, B., A high order sharp interface method with local timestepping for compressible multiphase flows, Communications in Computational Physics, 9, 205-230, (2011) · Zbl 1284.76265
[55] Flaherty, J.; Loy, R.; Shephard, M.; Szymanski, B.; Teresco, J.; Ziantz, L., Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws, Journal of Parallel and Distributed Computing, 47, 139-152, (1997)
[56] Gallardo, J. M.; Parés, C.; Castro, M. J., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, Journal of Computational Physics, 227, 574-601, (2007) · Zbl 1126.76036
[57] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. II. viscous flow equations in multi dimensions, Journal of Scientific Computing, 34, 260-286, (2008) · Zbl 1218.76027
[58] Grote, M. J.; Mitkova, T., Explicit local time-stepping methods for maxwell’s equations, Journal of Computational and Applied Mathematics, 234, 3283-3302, (2010) · Zbl 1210.78026
[59] Grote, M. J.; Mitkova, T., High-order explicit local time-stepping methods for damped wave equations, Journal of Computational and Applied Mathematics, 239, 270-289, (2013) · Zbl 1255.65174
[60] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes. III, Journal of Computational Physics, 71, 231-303, (1987) · Zbl 0652.65067
[61] Helzel, C.; Leveque, R. J.; Warnecke, G., A modified fractional step method for the accurate approximation of detonation waves, SIAM Journal on Scientific Computing, 22, 1489-1510, (2001) · Zbl 0983.65105
[62] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, Journal of Scientific Computing, 48, 173-189, (2011) · Zbl 1221.65231
[63] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 202-228, (1996) · Zbl 0877.65065
[64] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modelling of DDT in granular materials: reduced equations, Physics of Fluids, 13, 3002-3024, (2001) · Zbl 1184.76268
[65] Keppens, R.; Nool, M.; Tóth, G.; P Goedbloed, J., Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation, Computer Physics Communications, 153, 317-339, (2003) · Zbl 1196.76055
[66] M Khokhlov, A., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, Journal of Computational Physics, 143, 2, 519-543, (1998) · Zbl 0934.76057
[67] Krivodonova, L., An efficient local time-stepping scheme for solution of nonlinear conservation laws, Journal of Computational Physics, 229, 8537-8551, (2010) · Zbl 1201.65171
[68] Kurganov, A.; Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numerical Methods for Partial Differential Equations, 21, 3, 536-552, (2005) · Zbl 1071.65122
[69] Lee, B. J.; Toro, E. F.; Castro, C. E.; Nikiforakis, N., Adaptive osher-type scheme for the Euler equations with highly nonlinear equations of state, Journal of Computational Physics, 246, 165-183, (2013) · Zbl 1349.76354
[70] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, Journal of Computational Physics, 228, 8872-8891, (2009) · Zbl 1287.76181
[71] Löhner, R., An adaptive finite element scheme for transient problems in CFD, Computer Methods in Applied Mechanics and Engineering, 61, 323-338, (1987) · Zbl 0611.73079
[72] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, Journal of Scientific Computing, 32, 175-199, (2007) · Zbl 1143.76047
[73] Maire, P. H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Computers and Fluids, 46, 1, 341-347, (2011) · Zbl 1433.76137
[74] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, Journal de Mathématiques Pures et Appliquées, 74, 483-548, (1995) · Zbl 0853.35068
[75] Le Métayer, O.; Massoni, J.; Saurel, R., Modelling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics, 205, 567-610, (2005) · Zbl 1088.76051
[76] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, Journal of Computational Physics, 100, 209-228, (1992) · Zbl 0758.76044
[77] Müller, L. O.; Parés, C.; Toro, E. F., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, Journal of Computational Physics, 242, 53-85, (2013) · Zbl 1323.92066
[78] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, 202, 664-698, (2005) · Zbl 1061.76083
[79] Olivieri, D. A.; Fairweather, M.; Falle, S. A.E. G., An adaptive mesh refinement method for solution of the transported PDF equation, International Journal for Numerical Methods in Engineering, 79, 1536-1556, (2009) · Zbl 1176.80089
[80] Olivieri, D. A.; Fairweather, M.; Falle, S. A.E. G., Rans modelling of intermittent turbulent flows using adaptive mesh refinement methods, Journal of Turbulence, 11, 1-18, (2010) · Zbl 1273.76170
[81] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 12-49, (1988) · Zbl 0659.65132
[82] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM Journal on Numerical Analysis, 44, 300-321, (2006) · Zbl 1130.65089
[83] Parés, C.; Castro, M. J., On the well-balance property of roe’s method for nonconservative hyperbolic systems. applications to shallow-water systems, Mathematical Modelling and Numerical Analysis, 38, 821-852, (2004) · Zbl 1130.76325
[84] Pitman, E. B.; Le, L., A two-fluid model for avalanche and debris flows, Philosophical Transactions of the Royal Society A, 363, 1573-1601, (2005) · Zbl 1152.86302
[85] Quirk, J. J., A parallel adaptive grid algorithm for computational shock hydrodynamics, Applied Numerical Mathematics, 20, 4, 427-453, (1996) · Zbl 0856.65108
[86] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, Journal of Fluid Mechanics, 318, 129-163, (1996) · Zbl 0877.76046
[87] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, 150, 425-467, (1999) · Zbl 0937.76053
[88] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, 228, 1678-1712, (2009) · Zbl 1409.76105
[89] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, Journal of Computational Physics, 212, 490-526, (2006) · Zbl 1161.76531
[90] Shekari, Y.; Hajidavalloo, E., Application of osher and PRICE-C schemes to solve compressible isothermal two-fluid models of two-phase flow, Computers and Fluids, 86, 363-379, (2013) · Zbl 1290.76108
[91] Taube, A.; Dumbser, M.; Munz, C. D.; Schneider, R., A high order discontinuous Galerkin method with local time stepping for the Maxwell equations, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 22, 77-103, (2009) · Zbl 1156.78012
[92] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astronomy & Astrophysics, 385, 337-364, (2002)
[93] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, Journal of Scientific Computing, 17, 609-618, (2002) · Zbl 1024.76028
[94] Titarev, V. A.; Toro, E. F., Finite-volume weno schemes for three-dimensional conservation laws, Journal of Computational Physics, 201, 238-260, (2004) · Zbl 1059.65078
[95] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, Journal of Computational Physics, 204, 715-736, (2005) · Zbl 1060.65641
[96] Titarev, V. A.; Toro, E. F., WENO schemes based on upwind and centred TVD fluxes, Computers and Fluids, 34, 705-720, (2005) · Zbl 1134.65361
[97] Titarev, V. A.; Tsoutsanis, P.; Drikakis, D., WENO schemes for mixed-element unstructured meshes, Communications in Computational Physics, 8, 585-609, (2010) · Zbl 1364.76121
[98] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, Journal of Computational Physics, 229, 10, 3573-3604, (2010) · Zbl 1391.76440
[99] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (2009), Springer · Zbl 1227.76006
[100] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Towards very high order Godunov schemes, (Toro, E. F., Godunov Methods. Theory and Applications, (2001), Kluwer/Plenum Academic Publishers), 905-938 · Zbl 0989.65094
[101] Toro, E. F.; Titarev, V. A., TVD fluxes for the high-order ADER schemes, Journal of Scientific Computing, 24, 285-309, (2005) · Zbl 1096.76029
[102] Toumi, I., A weak formulation of roe’s approximate Riemann solver, Journal of Computational Physics, 102, 360-373, (1992) · Zbl 0783.65068
[103] Tsoutsanis, P.; Titarev, V. A.; Drikakis, D., WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, Journal of Computational Physics, 230, 1585-1601, (2011) · Zbl 1210.65160
[104] Utzmann, J.; Schwartzkopff, T.; Dumbser, M.; Munz, C. D., Heterogeneous domain decomposition for computational aeroacoustics, AIAA Journal, 44, 2231-2250, (2006)
[105] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, Journal of Computational Physics, 229, 2964-2998, (2010) · Zbl 1307.76079
[106] Z.Q. Zhou, J.O.D. Kat, B. Buchner, A nonlinear 3D approach to simulate green water dynamics on deck, in: Seventh Int. Conf. Numer. Ship Hydrodyn., 1999, pp. 1-4.
[107] Ziegler, U., The nirvana code: parallel computational MHD with adaptive mesh refinement, Computer Physics Communications, 179, 4, 227-244, (2008) · Zbl 1197.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.