zbMATH — the first resource for mathematics

Gumbel fluctuations for cover times in the discrete torus. (English) Zbl 1295.60053
For \(N\geq 3\) and \(d\geq 3\), the author considers a continuous time simple random walk\( (Y_{t})_{t\geq 0}\) in the torus \(T_{N}=(\mathbb{Z}/N\mathbb{Z})^{d}\) starting from the uniform distribution. Let \(H_{x}=\inf{t\geq 0:Y_{t}=x}\) denote the entrance time of a vertex \(x\in T_{N}\), and let \(C_{F}=\max_{x\in F}H_{x}\) define the cover time of a set \(F\subset T_{N}\). By constructing a coupling of \((Y_{t})_{t\subset 0}\) and independent random interlacements, the author proves that, for all \(F\subset T_{N}\) and some constant \(c>0, \sup_{z\in \mathbb{R}}|P(C_{F}\leq g(0,0)N^{d}(\text{log}|F|+z))-e^{-e^{-z}}|\leq c|F|^{-c}\), where g stands for the \(\mathbb{Z}^{d}\) Green function. This implies that \(C_{T_{N}}/g(0,0)N^{d}-\text{log}N^{d}\) converges in law to the standard Gumbel distribution as \(N\rightarrow \infty\).
Reviewer’s remark: Unfortunately, this paper is negligently and disorderly written. It also suffers from excessive verbosity and extended awkwardness. Moreover, errors such as “a point processes”, “variance of Var”, “the event the event”, “and and” are encountered.

60G50 Sums of independent random variables; random walks
60F05 Central limit and other weak theorems
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Full Text: DOI arXiv
[1] Aldous, DJ, On the time taken by random walks on finite groups to visit every state, Z. Wahrscheinlichkeitstheor. Verw. Geb., 62, 361-374, (1983) · Zbl 0488.60011
[2] Aldous, DJ, Threshold limits for cover times, J. Theoret. Probab., 4, 197-211, (1991) · Zbl 0717.60082
[3] Aldous, D.J., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs. In preparation. http://www.stat.berkeley.edu/aldous/RWG/book.html · Zbl 1235.60143
[4] Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (2008). With an appendix on the life and work of Paul Erdős · Zbl 1148.05001
[5] Belius, D, Cover levels and random interlacements, Ann. Appl. Probab., 22, 522-540, (2012) · Zbl 1271.60057
[6] Belius, D.: Cover times in the discrete cylinder. Submitted. http://arxiv.org/abs/1103.2079 · Zbl 1295.60053
[7] Billingsley, P.: Probability and measure. Wiley Series in Probability and Mathematical Statistics, 2nd edn. Wiley, New York (1986) · Zbl 0649.60001
[8] Brummelhuis, MJAM; Hilhorst, HJ, Covering of a finite lattice by a random walk, Physica A: Stat. Theoret. Phys., 176, 387-408, (1991)
[9] Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. (2) 160(2), 433-464 (2004) · Zbl 1068.60018
[10] Dembo, A; Peres, Y; Rosen, J; Zeitouni, O, Late points for random walks in two dimensions, Ann. Probab., 34, 219-263, (2006) · Zbl 1100.60057
[11] Keilson, J.: Markov chain models-rarity and exponentiality. Applied Mathematical Sciences. Springer, Berlin (1979) · Zbl 0411.60068
[12] Lawler, G.F.: Intersections of random walks. Probability and its Applications. Birkhäuser, Boston (1991) · Zbl 1228.60004
[13] Leadbetter, M.R., Rootzén, H.: On extreme values in stationary random fields. In: Karatzas, I., et al. (eds.) Stochastic Processes and Related Topics. Trends in Mathematics, pp. 275-285. In Memory of Stamatis Cambanis 1943-1995. Birkhäuser, Boston (1998) · Zbl 0920.60037
[14] Levin, D.A., Peres, Y.: Wilmer, E.L.: In: Propp, J.G., Wilson, D.B. (eds.) Markov Chains and Mixing Times. American Mathematical Society, Providence (2009) · Zbl 1160.60001
[15] Matthews, P, Covering problems for Markov chains, Ann. Probab., 16, 1215-1228, (1988) · Zbl 0712.60076
[16] Pereira, L; Ferreira, H, Limiting crossing probabilities of random fields, J. Appl. Probab., 43, 884-891, (2006) · Zbl 1120.60053
[17] Resnick, S.I.: Extreme values, regular variation, and point processes. In: Applied Probability. A Series of the Applied Probability Trust, vol. 4. Springer, New York (1987) · Zbl 0633.60001
[18] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006
[19] Serre, D.: Matrices. In: Theory and Applications. Graduate Texts in Mathematics, 2nd edn, vol. 216. Springer, New York (2010) · Zbl 1206.15001
[20] Sidoravicius, V; Sznitman, A-S, Percolation for the vacant set of random interlacements, Commun. Pure Appl. Math., 62, 831-858, (2009) · Zbl 1168.60036
[21] Sznitman, A-S, On the domination of random walk on a discrete cylinder by random interlacements, Electron. J. Probab., 14, 1670-1704, (2009) · Zbl 1196.60170
[22] Sznitman, A-S, Upper bound on the disconnection time of discrete cylinders and random interlacements, Ann. Probab., 37, 1715-1746, (2009) · Zbl 1179.60025
[23] Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039-2087 (2010) · Zbl 1202.60160
[24] Sznitman, A-S, Decoupling inequalities and interlacement percolation on \(G × {\mathbb{Z}}\), Invent. Math., 187, 645-706, (2012) · Zbl 1277.60183
[25] Teixeira, A; Windisch, D, On the fragmentation of a torus by random walk, Commun. Pure Appl. Math., 64, 1599-1646, (2011) · Zbl 1235.60143
[26] Windisch, D, Random walk on a discrete torus and random interlacements, Electron. Commun. Probab., 13, 140-150, (2008) · Zbl 1187.60089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.