×

zbMATH — the first resource for mathematics

Estimation of tail-related value-at-risk measures: range-based extreme value approach. (English) Zbl 1294.91192
Summary: This study proposes a new approach for estimating value-at-risk (VaR). This approach combines quasi-maximum-likelihood fitting of asymmetric conditional autoregressive range (ACARR) models to estimate the current volatility and classical extreme value theory (EVT) to estimate the tail of the innovation distribution of the ACARR model. The proposed approach reflects two well-known phenomena found in most financial time series: stochastic volatility and the fat-tailedness of conditional distributions. This approach presents two main advantages over the approach of McNeil and Frey (2000). First, the ACARR model in this approach is an asymmetric model that treats the upward and downward movements of the asset price asymmetrically, whereas the generalized autoregressive conditional heteroskedasticity model in the McNeil and Frey approach is a symmetric model that ignores the asymmetric structure of the asset price. Second, the proposed method uses classical EVT to estimate the tail of the distribution of the residuals to avoid the threshold issue in the modern EVT model. Since the McNeil and Frey approach uses modern EVT, it may estimate the tail of the innovation distribution poorly. Back testing of historical time series data shows that our approach gives better VaR estimates than the McNeil and Frey approach.

MSC:
91G70 Statistical methods; risk measures
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G70 Extreme value theory; extremal stochastic processes
91B84 Economic time series analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1111/1540-6261.00454
[2] DOI: 10.1214/aop/1176996548 · Zbl 0295.60014
[3] Barberis, N. and Huang, M., Mental accounting, loss aversion, and individual stock returns. GSB Working Paper, University of Chicago, 2000.
[4] DOI: 10.1016/0304-4076(86)90063-1 · Zbl 0616.62119
[5] DOI: 10.1016/0304-4076(92)90064-X · Zbl 0825.90057
[6] Bortkiewicz L., Sitzungsberichte den Berliner Mathematik Gesellschaft 21 pp 3– (1922)
[7] DOI: 10.1198/073500106000000206
[8] Campbell, J., Asset prices, consumption and the business cycle. InThe Handbook of Macroeconomics, edited by J.B. Taylor and M. Woodford, pp. 1231–1303, 1999 (Elsevier: Amsterdam).
[9] DOI: 10.1016/S0731-9053(05)20009-9 · Zbl 1190.91151
[10] Dacorogna M., The Distribution of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets (1995)
[11] DOI: 10.1016/S0927-5398(97)00008-X
[12] Danielsson J., Annales d’Economie et de Statistique 60 pp 239– (2000)
[13] DOI: 10.1006/jmva.2000.1903 · Zbl 0976.62044
[14] DOI: 10.1007/978-1-4615-5625-1_1
[15] DOI: 10.1111/j.1467-9965.1995.tb00099.x · Zbl 0866.90031
[16] DOI: 10.1023/A:1009914915709 · Zbl 0921.62030
[17] DOI: 10.1007/978-3-642-33483-2
[18] DOI: 10.2307/1913242
[19] DOI: 10.1111/j.1540-6261.1993.tb05127.x
[20] DOI: 10.1017/S0305004100015681 · JFM 54.0560.05
[21] Frechet M., Annals de la Societe polonaise de Mathematiques 6 pp 93– (1927)
[22] DOI: 10.1162/003465399558481
[23] DOI: 10.1086/296072
[24] DOI: 10.1016/j.insmatheco.2003.07.004 · Zbl 1103.91364
[25] DOI: 10.1007/s10614-005-9013-3
[26] DOI: 10.2307/1968974 · Zbl 0063.01643
[27] DOI: 10.1007/978-1-4612-1860-9
[28] Gumbel E., Statistics of Extremes (1958) · Zbl 0086.34401
[29] DOI: 10.2307/2109682
[30] Jenkinson A., Q. J. R. Meteorol. Soc. 87 pp 145– (1955)
[31] Jondeau E., The Tail Behavior of Stock Returns: Emerging Versus Mature Markets (1999)
[32] Kinnison R., Applied Extreme-value Statistics (1985)
[33] DOI: 10.1016/0022-1996(90)90065-T
[34] Kofman P., Adv. Rev. Futures Markets 6 pp 263– (1993)
[35] Kofman P., Rev. Futures Markets 8 pp 244– (1989)
[36] Kuan, C. and Webber, N., Valuing interest rate derivatives consistent with a volatility smile. Working Paper, University of Warwick, 1998.
[37] DOI: 10.1086/296570
[38] Levy H., Am. Econ. Rev. 68 pp 643– (1978)
[39] Longin, F., Optimal margins in futures markets: a parametric extreme-based approach. Proceedings of 9th Chicago Board of Trade Conference on Futures and Options, Bonn, 1995.
[40] DOI: 10.1086/209695
[41] DOI: 10.1002/(SICI)1096-9934(199904)19:2<127::AID-FUT1>3.0.CO;2-M
[42] DOI: 10.1016/S0378-4266(99)00077-1
[43] DOI: 10.1016/0927-5398(94)90004-3
[44] DOI: 10.1002/fut.3990120208
[45] DOI: 10.2307/2528283
[46] DOI: 10.1016/j.jeconom.2006.05.019 · Zbl 1418.62515
[47] DOI: 10.2143/AST.27.1.563210
[48] McNeil A., Internal Modelling and CAD II pp 93– (1999)
[49] DOI: 10.1016/S0927-5398(00)00012-8
[50] DOI: 10.1016/S0927-5398(97)00007-8
[51] DOI: 10.3905/jod.2000.319126
[52] DOI: 10.2307/2938260 · Zbl 0722.62069
[53] DOI: 10.1007/b98874 · Zbl 0930.65067
[54] DOI: 10.1086/296071
[55] DOI: 10.1214/aos/1176343003 · Zbl 0312.62038
[56] DOI: 10.1214/aoap/1177005835 · Zbl 0739.62084
[57] Rootzuen H., Ambio 28 pp 550– (1999)
[58] Shephard N., Time Series Models in Econometrics, Finance and Other Fields pp 1– (1996)
[59] DOI: 10.1214/aos/1176350499 · Zbl 0642.62022
[60] Straetmans, S., Extreme financial returns and their comovements. PhD Thesis, Tinbergen Institute Research Series, Erasmus University Rotterdam, 1998.
[61] Tiago de Oliveira J., Statistical Extremes–A Survey (1973)
[62] DOI: 10.1002/0471264105
[63] DOI: 10.1086/296544
[64] DOI: 10.1086/209650
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.