zbMATH — the first resource for mathematics

On efficiency of mean-variance based portfolio selection in defined contribution pension schemes. (English) Zbl 1294.91168
Summary: We consider the portfolio selection problem in the accumulation phase of a defined contribution (DC) pension scheme. We solve the mean-variance portfolio selection problem using the embedding technique pioneered by X. Y. Zhou and D. Li [Appl. Math. Optim. 42, No. 1, 19–33 (2000; Zbl 0998.91023)] and show that it is equivalent to a target-based optimization problem, consisting of the minimization of a quadratic loss function. We support the use of the target-based approach in DC pension funds for three reasons. Firstly, it transforms the difficult problem of selecting the individual’s risk-aversion coefficient into the easier task of choosing an appropriate target. Secondly, it is intuitive, flexible and adaptable to the member’s needs and preferences. Thirdly, it produces final portfolios that are efficient in the mean-variance setting. We address the issue of the comparison between an efficient portfolio and a portfolio that is optimal according to the more general criterion of maximization of the expected utility (EU). The two natural notions of Variance Inefficiency and Mean Inefficiency are introduced, which measure the distance of an optimal inefficient portfolio from an efficient one, focusing on their variance and on their expected value, respectively. We illustrate the general procedure for finding the mean-variance inefficiency for the HARA class of utility functions, and then focus on the popular classes of CARA and CRRA utility functions. In these cases we prove the intuitive but non-trivial result that the mean-variance inefficiency decreases with the risk aversion of the individual and increases with the time horizon and the Sharpe ratio of the risky asset. As a by-product we prove that the CARA and CRRA optimal portfolios are not mean-variance efficient. Numerical investigations stress the impact of the time horizon on extent of the mean-variance inefficiency of CARA and CRRA utility functions. While at the instantaneous level EU optimality and efficiency coincide (see [R. C. Merton, J. Econ. Theory 3, 373–413 (1971; Zbl 1011.91502)]), we find that, for short durations, they do not differ significantly. However, for longer durations, which are typical for pension funds, the extent of the inefficiency turns out to be remarkable and should be taken into account by pension fund investment managers seeking appropriate rules for portfolio selection. Indeed, we see this result as a fourth reason for supporting the use of the target-based approach in DC pension schemes.

91G10 Portfolio theory
91B30 Risk theory, insurance (MSC2010)
90C90 Applications of mathematical programming
Full Text: DOI
[1] DOI: 10.1287/mnsc.44.11.S79 · Zbl 0999.91037
[2] DOI: 10.1093/rfs/hhq028
[3] DOI: 10.1016/j.insmatheco.2003.11.001 · Zbl 1068.91028
[4] DOI: 10.1111/j.0960-1627.2005.00218.x · Zbl 1153.91466
[5] DOI: 10.1093/0198775180.001.0001
[6] Björk T, Mean-variance portfolio optimization with state-dependent risk aversion.Math. Finance (2012)
[7] DOI: 10.1007/s102030050005 · Zbl 1051.91503
[8] Boulier , J-F . Trussant, E. and Florens, D., A dynamic model for pension funds management. Paper presented at the 5th AFIR Colloquium, 1995
[9] Boulier , J-F . Michel, S. and Wisnia, V., Optimizing investment and contribution policies of a defined benefit pension fund. Paper presented at the 6th AFIR Colloquium, 1996
[10] DOI: 10.1016/S0167-6687(00)00073-1 · Zbl 0976.91034
[11] DOI: 10.1287/moor.22.2.468 · Zbl 0883.90011
[12] DOI: 10.1162/REST_a_00138
[13] DOI: 10.2143/AST.30.1.504625 · Zbl 1018.91028
[14] DOI: 10.1016/j.jedc.2005.03.009 · Zbl 1200.91297
[15] DOI: 10.1093/0198296940.001.0001
[16] Canessa M, In Pension Trends (2008)
[17] DOI: 10.1080/14697681003685589 · Zbl 1210.91119
[18] DOI: 10.1016/j.insmatheco.2006.03.006 · Zbl 1151.91493
[19] DOI: 10.1016/S0167-6687(03)00153-7 · Zbl 1074.91013
[20] DOI: 10.1016/S0167-6687(03)00136-7 · Zbl 1103.91346
[21] Di Giacinto M, Constrained portfolio choices in the decumulation phase of a pension plan (2010)
[22] DOI: 10.1007/s00780-010-0127-7 · Zbl 1303.91155
[23] DOI: 10.1016/j.insmatheco.2008.03.004 · Zbl 1141.91439
[24] DOI: 10.1016/j.insmatheco.2004.06.002 · Zbl 1093.91027
[25] DOI: 10.1080/10920277.2006.10596241
[26] DOI: 10.1080/14697680903358248 · Zbl 1279.91094
[27] DOI: 10.2307/2330663
[28] DOI: 10.1287/mnsc.39.7.856
[29] DOI: 10.1162/JEEA.2008.6.6.1109
[30] DOI: 10.1016/0167-6687(94)90791-9 · Zbl 0818.62091
[31] DOI: 10.1016/S0167-6687(02)00128-2 · Zbl 1039.91025
[32] DOI: 10.2307/2330126
[33] Højgaard B, Mean–variance portfolio selection and efficient frontier for defined contribution pension schemes
[34] DOI: 10.1257/000282802762024700
[35] Jin H, Greed, leverage, and potential losses: A prospect theory perspective. Math. Finance (2012)
[36] DOI: 10.1086/296296
[37] DOI: 10.1093/rof/rfq013 · Zbl 1210.91123
[38] DOI: 10.2307/1914185 · Zbl 0411.90012
[39] DOI: 10.1111/1467-9965.00100 · Zbl 0997.91027
[40] Luenberger DG, Investment Science (1998)
[41] DOI: 10.2307/2975974
[42] Markowitz H, Portfolio Selection: Efficient Diversification of Investments (1959)
[43] DOI: 10.1016/0022-0531(71)90038-X · Zbl 1011.91502
[44] Merton RC, Continuous-time Finance (1990)
[45] DOI: 10.1287/mnsc.35.9.1045 · Zbl 0682.90008
[46] DOI: 10.1007/s11166-007-9017-6 · Zbl 1151.91431
[47] DOI: 10.1007/BF00122574 · Zbl 0775.90106
[48] DOI: 10.1016/j.insmatheco.2006.05.003 · Zbl 1141.91470
[49] DOI: 10.1016/j.insmatheco.2006.04.007 · Zbl 1141.91473
[50] DOI: 10.1007/978-0-387-21757-4_9
[51] DOI: 10.1007/s002450010003 · Zbl 0998.91023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.