×

Numerical NLO QCD calculations. (English) Zbl 1294.81267

Summary: We present an algorithm for the numerical calculation of one-loop QCD amplitudes. The algorithm consists of subtraction terms, approximating the soft, collinear and ultraviolet divergences of one-loop amplitudes and a method to deform the integration contour for the loop integration into the complex space. The algorithm is formulated at the amplitude level and does not rely on Feynman graphs. Therefore all required ingredients can be calculated efficiently using recurrence relations. The algorithm applies to massless partons as well as to massive partons.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] W.B. Kilgore and W.T. Giele, Next-to-leading order gluonic three jet production at hadron colliders, Phys. Rev.D 55 (1997) 7183 [hep-ph/9610433] [SPIRES].
[2] Z. Nagy, Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett.88 (2002) 122003 [hep-ph/0110315] [SPIRES].
[3] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].
[4] S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett.98 (2007) 262002 [hep-ph/0703120] [SPIRES].
[5] S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J.C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].
[6] K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys.B 840 (2010) 129 [arXiv:1004.3284] [SPIRES]. · Zbl 1206.81145
[7] W. Beenakker et al., NLO QCD corrections to t anti-tH production in hadron collisions. ((U)), Nucl. Phys.B 653 (2003) 151 [hep-ph/0211352] [SPIRES].
[8] S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, A ssociated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev.D 68 (2003) 034022 [hep-ph/0305087] [SPIRES].
[9] A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \(t\bar{t}Z\) production at the LHC, Phys. Lett.B 666 (2008) 62 [arXiv:0804.2220] [SPIRES].
[10] D. Peng-Fei et al., QCD corrections to associated production of \(t\bar{t}\gamma\) at hadron colliders, arXiv:0907.1324 [SPIRES].
[11] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan and S. Weinzierl, The Fully differential single top quark cross-section in next to leading order QCD, Phys. Rev.D 66 (2002) 054024 [hep-ph/0207055] [SPIRES].
[12] Q.-H. Cao and C.P. Yuan, Single top quark production and decay at next-to-leading order in hadron collision, Phys. Rev.D 71 (2005) 054022 [hep-ph/0408180] [SPIRES].
[13] Q.-H. Cao, R. Schwienhorst and C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at Tevatron. 1. s−channel process, Phys. Rev.D 71 (2005) 054023 [hep-ph/0409040] [SPIRES].
[14] Q.-H. Cao, R. Schwienhorst, J.A. Benitez, R. Brock and C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at the Tevatron: 2. t−channel process, Phys. Rev.D 72 (2005) 094027 [hep-ph/0504230] [SPIRES].
[15] J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 182003 [arXiv:0903.0005] [SPIRES].
[16] S. Heim, Q.-H. Cao, R. Schwienhorst and C.P. Yuan, Next-to-leading order QCD corrections to s-channel single top quark production and decay at the LHC, Phys. Rev.D 81 (2010) 034005 [arXiv:0911.0620] [SPIRES].
[17] J.M. Campbell, K.R. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP12 (2007) 056 [arXiv:0710.1832] [SPIRES].
[18] S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett.100 (2008) 062003 [arXiv:0710.1577] [SPIRES].
[19] S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \({{{pp}} \left/ {{p\bar{p}}} \right.} \to WW + jet + X\) including leptonic W-boson decays, Nucl. Phys.B 826 (2010) 18 [arXiv:0908.4124] [SPIRES]. · Zbl 1203.81174
[20] T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+jet production at hadron colliders, Phys. Lett.B 683 (2010) 154 [arXiv:0911.3181] [SPIRES].
[21] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, arXiv:1007.5313 [SPIRES].
[22] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES].
[23] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \(pp \to t\bar{t}\;b\bar{b} + X\) at the LHC, Phys. Rev. Lett.103 (2009) 012002 [arXiv:0905.0110] [SPIRES].
[24] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP03 (2010) 021 [arXiv:1001.4006] [SPIRES]. · Zbl 1271.81172
[25] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pp → tt bb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[26] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of \(pp \to t\bar{t} + 2\) jets at Next-To-Leading Order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES].
[27] J.M. Campbell and R.K. Ellis, Radiative corrections to \(Z\;b\bar{b}\) production, Phys. Rev.D 62 (2000) 114012 [hep-ph/0006304] [SPIRES].
[28] J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W+2 jet and Z+2 jet production at hadron colliders, Phys. Rev.D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].
[29] J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W + 2jet and Z + 2jet production at the CERN LHC, Phys. Rev.D 68 (2003) 094021 [hep-ph/0308195] [SPIRES].
[30] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev.D 73 (2006) 054007 [hep-ph/0510362] [SPIRES].
[31] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b−quark tag, Phys. Rev.D 75 (2007) 054015 [hep-ph/0611348] [SPIRES].
[32] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett.87 (2001) 122001 [hep-ph/0105129] [SPIRES].
[33] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon-fusion contributions to H + 2 jet production, Nucl. Phys.B 616 (2001) 367 [hep-ph/0108030] [SPIRES].
[34] J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP10 (2006) 028 [hep-ph/0608194] [SPIRES].
[35] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [SPIRES].
[36] R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev.D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].
[37] C.F. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES].
[38] C.F. Berger et al., Next-to-Leading Order QCD Predictions for W + 3 Jet Distributions at Hadron Colliders, Phys. Rev.D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].
[39] C.F. Berger et al., Next-to-Leading Order QCD Predictions for Z, γ∗ + 3-Jet Distributions at the Tevatron, Phys. Rev.D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].
[40] C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[41] A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev.D 76 (2007) 014001 [hep-ph/0703273] [SPIRES].
[42] T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [SPIRES].
[43] T. Binoth et al., Next-to-leading order QCD corrections to \(pp \to b\bar{b}b\bar{b} + X\) at the LHC: the quark induced case, Phys. Lett.B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].
[44] B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+W−production via vector-boson fusion, JHEP07 (2006) 015 [hep-ph/0603177] [SPIRES].
[45] B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev.D 73 (2006) 113006 [hep-ph/0604200] [SPIRES].
[46] G. Bozzi, B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+Z and W−Z production via vector-boson fusion, Phys. Rev.D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].
[47] V. Hankele and D. Zeppenfeld, QCD corrections to hadronic WWZ production with leptonic decays, Phys. Lett.B 661 (2008) 103 [arXiv:0712.3544] [SPIRES].
[48] F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev.D 78 (2008) 094012 [arXiv:0809.0790] [SPIRES].
[49] B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W+W+jj and W−W−jj production via weak-boson fusion, Phys. Rev.D 80 (2009) 034022 [arXiv:0907.0580] [SPIRES].
[50] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [hep-ph/9605323] [SPIRES].
[51] S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys.B 565 (2000) 69 [hep-ph/9904440] [SPIRES].
[52] L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP04 (2001) 006 [hep-ph/0102207] [SPIRES].
[53] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [SPIRES]. · Zbl 0990.81140
[54] S. Weinzierl, Automated computation of spin-and colour-correlated Born matrix elements, Eur. Phys. J.C 45 (2006) 745 [hep-ph/0510157] [SPIRES].
[55] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].
[56] M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[57] K. Hasegawa, S. Moch and P. Uwer, AutoDipole - Automated generation of dipole subtraction terms -, Comput. Phys. Commun.181 (2010) 1802 [arXiv:0911.4371] [SPIRES]. · Zbl 1219.81244
[58] R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP09 (2008) 122 [arXiv:0808.2128] [SPIRES].
[59] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP08 (2009) 085 [arXiv:0905.0883] [SPIRES].
[60] F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [SPIRES].
[61] D.A. Kosower, Light Cone Recurrence Relations for QCD Amplitudes, Nucl. Phys.B 335 (1990) 23 [SPIRES].
[62] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [SPIRES].
[63] A. Kanaki and C.G. Papadopoulos, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun.132 (2000) 306 [hep-ph/0002082] [SPIRES]. · Zbl 1031.81507
[64] M. Moretti, T. Ohl and J. Reuter, O’Mega: An optimizing matrix element generator, hep-ph/0102195 [SPIRES].
[65] M. Dinsdale, M. Ternick and S. Weinzierl, A comparison of efficient methods for the computation of Born gluon amplitudes, JHEP03 (2006) 056 [hep-ph/0602204] [SPIRES]. · Zbl 1226.81139
[66] C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [SPIRES].
[67] S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys.B 675 (2003) 447 [hep-ph/0308246] [SPIRES]. · Zbl 1097.81668
[68] A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys.B 658 (2003) 175 [hep-ph/0212259] [SPIRES]. · Zbl 1027.81517
[69] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys.B 734 (2006) 62 [hep-ph/0509141] [SPIRES]. · Zbl 1192.81158
[70] A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, arXiv:1005.2076 [SPIRES]. · Zbl 1207.81167
[71] W.T. Giele and E.W.N. Glover, A calculational formalism for one-loop integrals, JHEP04 (2004) 029 [hep-ph/0402152] [SPIRES].
[72] A. van Hameren, J. Vollinga and S. Weinzierl, Automated computation of one-loop integrals in massless theories, Eur. Phys. J.C 41 (2005) 361 [hep-ph/0502165] [SPIRES].
[73] R.K. Ellis, W.T. Giele and G. Zanderighi, Semi-numerical evaluation of one-loop corrections, Phys. Rev.D 73 (2006) 014027 [hep-ph/0508308] [SPIRES].
[74] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[75] R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
[76] T. Binoth, G. Heinrich and N. Kauer, A numerical evaluation of the scalar hexagon integral in the physical region, Nucl. Phys.B 654 (2003) 277 [hep-ph/0210023] [SPIRES]. · Zbl 1010.81060
[77] T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP10 (2005) 015 [hep-ph/0504267] [SPIRES].
[78] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES].
[79] C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev.D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].
[80] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].
[81] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[82] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[83] G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES].
[84] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES].
[85] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[86] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP01 (2010) 040 [arXiv:0910.3130] [SPIRES]. · Zbl 1269.81214
[87] W.B. Kilgore, One-loop Integral Coefficients from Generalized Unitarity, arXiv:0711.5015 [SPIRES].
[88] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [SPIRES].
[89] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [SPIRES].
[90] R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [SPIRES].
[91] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [SPIRES]. · Zbl 1246.81170
[92] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234
[93] D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett.81 (1998) 2638 [hep-ph/9804454] [SPIRES].
[94] D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev.D 62 (2000) 014009 [hep-ph/9910292] [SPIRES].
[95] D.E. Soper, Choosing integration points for QCD calculations by numerical integration, Phys. Rev.D 64 (2001) 034018 [hep-ph/0103262] [SPIRES].
[96] M. Krämer, 1 and D.E. Soper, Next-to-leading order numerical calculations in Coulomb gauge, Phys. Rev.D 66 (2002) 054017 [hep-ph/0204113] [SPIRES].
[97] Z. Nagy and D.E. Soper, General subtraction method for numerical calculation of one-loop QCD matrix elements, JHEP09 (2003) 055 [hep-ph/0308127] [SPIRES].
[98] Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 74 (2006) 093006 [hep-ph/0610028] [SPIRES].
[99] W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 79 (2009) 033005 [arXiv:0812.3686] [SPIRES].
[100] G. Passarino, An Approach Toward the Numerical Evaluation of Multi-Loop Feynman Diagrams, Nucl. Phys.B 619 (2001) 257 [hep-ph/0108252] [SPIRES]. · Zbl 0991.81080
[101] A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams, Nucl. Phys.B 650 (2003) 162 [hep-ph/0209219] [SPIRES]. · Zbl 1005.81059
[102] C. Anastasiou, S. Beerli and A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP05 (2007) 071 [hep-ph/0703282] [SPIRES].
[103] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [arXiv:0901.0722] [SPIRES].
[104] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [SPIRES].
[105] M. Assadsolimani, S. Becker and S. Weinzierl, A simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes, Phys. Rev.D 81 (2010) 094002 [arXiv:0912.1680] [SPIRES].
[106] M. Assadsolimani, S. Becker, C. Reuschle and S. Weinzierl, Infrared singularities in one-loop amplitudes, Nucl. Phys. Proc. Suppl.205-206 (2010) 224 [arXiv:1006.4609] [SPIRES].
[107] P. Cvitanovic, P.G. Lauwers and P.N. Scharbach, Gauge Invariance Structure Of Quantum Chromodynamics, Nucl. Phys.B 186 (1981) 165 [SPIRES].
[108] F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus, Nucl. Phys.B 294 (1987) 700 [SPIRES].
[109] M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi-Gluon Scattering, Nucl. Phys.B 298 (1988) 653 [SPIRES].
[110] D. Kosower, B.-H. Lee and V.P. Nair, Multi Gluon Scattering: A String Based Calculation, Phys. Lett.B 201 (1988) 85 [SPIRES].
[111] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys.B 362 (1991) 389 [SPIRES].
[112] G. ’t Hooft, Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [SPIRES].
[113] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of QCD amplitudes, Phys. Rev.D 67 (2003) 014026 [hep-ph/0209271] [SPIRES].
[114] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [SPIRES].
[115] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [SPIRES]. · Zbl 0118.44501
[116] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [SPIRES].
[117] N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett.B 298 (1993) 363 [SPIRES].
[118] H.J. Lu and C.A. Perez, Massless one loop scalar three point integral and associated Clausen, Glaisher and L functions, report SLAC-PUB-5809 [SPIRES].
[119] Z. Bern, L.J. Dixon, D.A. Kosower and S. Weinzierl, One-loop amplitudes for \({e^+ }{e^- } \to \bar{q}q\bar{Q}Q \), Nucl. Phys.B 489 (1997) 3 [hep-ph/9610370] [SPIRES].
[120] G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys.27 (1978) 192 [SPIRES]. · Zbl 0377.65010
[121] G. P. Lepage, Vegas: An Adaptive Multidimensional Integration Program, report CLNS-80/447 [SPIRES].
[122] T. Binoth, J.P. Guillet and G. Heinrich, Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. Phys.B 572 (2000) 361 [hep-ph/9911342] [SPIRES].
[123] J. Fleischer, F. Jegerlehner and O.V. Tarasov, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys.B 566 (2000) 423 [hep-ph/9907327] [SPIRES]. · Zbl 0956.81054
[124] G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. Phys. J.C 35 (2004) 105 [hep-ph/0303184] [SPIRES]. · Zbl 1191.81116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.