×

zbMATH — the first resource for mathematics

Turbulent spots in a channel: large-scale flow and self-sustainability. (English) Zbl 1294.76165
Summary: Using a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.

MSC:
76F10 Shear flows and turbulence
76F06 Transition to turbulence
76-05 Experimental work for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[2] DOI: 10.1017/S0022112071002842 · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[3] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[4] DOI: 10.1063/1.3580263 · Zbl 1308.76135 · doi:10.1063/1.3580263
[5] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[6] DOI: 10.1088/0169-5983/41/4/045501 · Zbl 1422.76107 · doi:10.1088/0169-5983/41/4/045501
[7] DOI: 10.1063/1.4772065 · Zbl 06429856 · doi:10.1063/1.4772065
[8] DOI: 10.1063/1.2768946 · Zbl 1182.76422 · doi:10.1063/1.2768946
[9] Curr. Sci. 79 pp 816– (2000)
[10] DOI: 10.1088/0951-7715/21/4/T02 · Zbl 1139.35002 · doi:10.1088/0951-7715/21/4/T02
[11] DOI: 10.1017/S0022112092000065 · doi:10.1017/S0022112092000065
[12] DOI: 10.1103/PhysRevLett.103.144502 · doi:10.1103/PhysRevLett.103.144502
[13] DOI: 10.1126/science.1186091 · doi:10.1126/science.1186091
[14] DOI: 10.1017/S0022112010003435 · Zbl 1205.76126 · doi:10.1017/S0022112010003435
[15] DOI: 10.1063/1.866067 · doi:10.1063/1.866067
[16] DOI: 10.1103/PhysRevLett.110.034502 · doi:10.1103/PhysRevLett.110.034502
[17] J. Fluid Mech. 228 pp 183– (1991)
[18] DOI: 10.1103/PhysRevE.84.066315 · doi:10.1103/PhysRevE.84.066315
[19] DOI: 10.1007/BF02383603 · Zbl 0793.76047 · doi:10.1007/BF02383603
[20] DOI: 10.1017/S0022112010002892 · Zbl 1205.76085 · doi:10.1017/S0022112010002892
[21] DOI: 10.1098/rsta.2008.0227 · Zbl 1221.76063 · doi:10.1098/rsta.2008.0227
[22] J. Aerosp. Sci. 18 pp 490– (1951)
[23] DOI: 10.1017/S0022112082002006 · doi:10.1017/S0022112082002006
[24] DOI: 10.1063/1.869962 · Zbl 1147.76382 · doi:10.1063/1.869962
[25] DOI: 10.1103/PhysRevE.84.016309 · doi:10.1103/PhysRevE.84.016309
[26] DOI: 10.1063/1.865884 · doi:10.1063/1.865884
[27] DOI: 10.1103/PhysRevE.63.046307 · doi:10.1103/PhysRevE.63.046307
[28] DOI: 10.1007/978-3-642-46543-7 · doi:10.1007/978-3-642-46543-7
[29] DOI: 10.1098/rstl.1883.0029 · JFM 16.0845.02 · doi:10.1098/rstl.1883.0029
[30] DOI: 10.1017/S0022112098001323 · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[31] DOI: 10.1017/S0022112093003738 · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[32] DOI: 10.1016/S0167-2789(02)00685-1 · Zbl 1036.76023 · doi:10.1016/S0167-2789(02)00685-1
[33] DOI: 10.1103/PhysRevE.85.025303 · doi:10.1103/PhysRevE.85.025303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.