×

zbMATH — the first resource for mathematics

Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. (English) Zbl 1294.76119
Summary: We study the modal and non-modal linear instability of inertia-dominated channel flow of viscoelastic fluids modelled by the Oldroyd-B and FENE-P closures. The effects of polymer viscosity and relaxation time are considered for both fluids, with the additional parameter of the maximum possible extension for the FENE-P. We find that the parameter explaining the effect of the polymer on the instability is the ratio between the polymer relaxation time and the characteristic instability time scale (the frequency of a modal wave and the time over which the disturbance grows in the non-modal case). Destabilization of both modal and non-modal instability is observed when the polymer relaxation time is shorter than the instability time scale, whereas the flow is more stable in the opposite case. Analysis of the kinetic energy budget reveals that in both regimes the production of perturbation kinetic energy due to the work of the Reynolds stress against the mean shear is responsible for the observed effects where polymers act to alter the correlation between the streamwise and wall-normal velocity fluctuations. In the subcritical regime, the non-modal amplification of streamwise elongated structures is still the most dangerous disturbance-growth mechanism in the flow and this is slightly enhanced by the presence of polymers. However, viscoelastic effects are found to have a stabilizing effect on the amplification of oblique modes.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Phys. Rev. Lett. 96 (2006)
[2] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013
[3] Phys. Rev. Lett. 87 (2001)
[4] J. Fluid Mech. 590 pp 61– (2007)
[5] Physics 5 pp 1390– (1993)
[6] Proceedings of the First International Congress on Rheology (North-Holland, Amsterdam, 1949), vol. 2 pp 135– (1949)
[7] Dynamics of Polymer Liquids. Vol. 2. Kinetic Theory (1987)
[8] DOI: 10.1063/1.866609
[9] DOI: 10.1016/S0377-0257(98)00129-3 · Zbl 0968.76008
[10] Phys. Rev. E 77 (2008)
[11] Phys. Rev. E 82 (2010)
[12] DOI: 10.1016/0377-0257(94)01279-Q
[13] DOI: 10.1063/1.868200
[14] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052
[15] DOI: 10.1063/1.1775192 · Zbl 1187.76502
[16] J. Non-Newtonian Fluid Mech. 102 pp 209– (2002)
[17] DOI: 10.1016/j.jnnfm.2006.01.005 · Zbl 1195.76174
[18] DOI: 10.1146/annurev.fl.28.010196.001021
[19] Phys. Rev. Lett. 96 (2006)
[20] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556
[21] Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[22] DOI: 10.1016/j.jnnfm.2005.03.003 · Zbl 1195.76173
[23] DOI: 10.1016/j.jnnfm.2005.08.013 · Zbl 1195.76086
[24] DOI: 10.1063/1.1425847 · Zbl 1184.76468
[25] Spectral Methods: Evolution of Complex Geometries and Applications to Fluid Mechanics (2007)
[26] Phys. Rev. Lett. 97 (2006)
[27] DOI: 10.1063/1.858386
[28] DOI: 10.1016/0377-0257(86)80002-7 · Zbl 0608.76006
[29] DOI: 10.1137/0153002 · Zbl 0778.34060
[30] Phys. Fluids 13 (2005)
[31] DOI: 10.1122/1.549279 · Zbl 0362.76079
[32] J. Fluid Mech. 592 pp 177– (2007)
[33] Phys. Rev. Lett. 95 (2005)
[34] DOI: 10.1016/j.jnnfm.2003.09.003 · Zbl 1106.76367
[35] DOI: 10.1017/jfm.2013.114 · Zbl 1287.76101
[36] DOI: 10.1017/S0022112090001124 · Zbl 0706.76011
[37] DOI: 10.1038/35011172
[38] DOI: 10.1007/BF00366504
[39] Phys. Rev. E 86 (2013)
[40] Phys. Fluids 23 (2011)
[41] DOI: 10.1016/j.jnnfm.2011.02.010 · Zbl 1282.76052
[42] Phys. Fluids 22 (2010)
[43] DOI: 10.1063/1.858483 · Zbl 0762.76025
[44] DOI: 10.1017/CBO9780511524608
[45] DOI: 10.1017/S0022112009006223 · Zbl 1171.76364
[46] Phys. Fluids 24 (2011)
[47] J. Fluid Mech. 601 pp 407– (2008)
[48] Phys. Fluids 22 (2010)
[49] DOI: 10.1016/0377-0257(77)80048-7
[50] DOI: 10.1017/S0022112010000066 · Zbl 1189.76326
[51] DOI: 10.1088/1367-2630/6/1/029
[52] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043
[53] Nature 405 pp 53– (2001)
[54] DOI: 10.1145/365723.365727
[55] DOI: 10.1016/S0093-6413(97)00016-5 · Zbl 0899.76154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.