×

zbMATH — the first resource for mathematics

Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. (English) Zbl 1294.76108
Summary: The control of Tollmien-Schlichting waves in a two-dimensional boundary layer is analysed using numerical simulations. Full-dimensional optimal controllers are used in combination with a setup of spatially localized inputs (actuator and disturbance) and outputs (sensors). The adjoint of the direct-adjoint (ADA) algorithm, recently proposed by J. O. Pralits and P. Luchini in [P. Schlatter and D. S. Henningson (eds.), Seventh IUTAM Symposium on Laminar-Turbulent Transition 18, Springer (2010)], is used to efficiently compute an optimal controller known as a linear quadratic regulator; the method is iterative and allows one to bypass the solution of the corresponding Riccati equation, which is infeasible for high-dimensional systems. We show that an analogous iteration can be made for the estimation problem; the dual algorithm is referred to as adjoint of the adjoint-direct (AAD). By combining the solutions of the estimation and control problem, full-dimensional linear quadratic Gaussian controllers are obtained and used for the attenuation of the disturbances arising in the boundary layer flow. The full-dimensional controllers turn out to be an excellent benchmark for evaluating the performance of the optimal control/estimation design based on reduced-order models. We show under which conditions the two strategies are in perfect agreement by focusing on the issues arising when feedback configurations are considered. An analysis of the finite-amplitude disturbances is also carried out by addressing the limitations of the optimal controllers, the role of the estimation, and the robustness to the nonlinearities arising in the flow of the control design.

MSC:
76D55 Flow control and optimization for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Software:
SIMSON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TAC.2002.800646 · Zbl 1364.93363 · doi:10.1109/TAC.2002.800646
[2] (2007)
[3] DOI: 10.1115/1.3077635 · doi:10.1115/1.3077635
[4] 47th IEEE Conference on Decision and Control pp 3983– (2008)
[5] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[6] Robust and Optimal Control (2002)
[7] Optimal Control: Linear Quadratic Methods (1990) · Zbl 0751.49013
[8] DOI: 10.1017/S0022112001005821 · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[9] DOI: 10.1109/9.29422 · Zbl 0698.93034 · doi:10.1109/9.29422
[10] DOI: 10.1016/S0142-727X(03)00051-1 · doi:10.1016/S0142-727X(03)00051-1
[11] DOI: 10.1016/S0376-0421(00)00016-6 · doi:10.1016/S0376-0421(00)00016-6
[12] DOI: 10.1017/S0022112011000620 · Zbl 1241.76167 · doi:10.1017/S0022112011000620
[13] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049 · doi:10.1017/S0022112007005496
[14] DOI: 10.1002/nla.622 · Zbl 1212.65245 · doi:10.1002/nla.622
[15] Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[16] DOI: 10.1137/0329029 · Zbl 0736.65043 · doi:10.1137/0329029
[17] DOI: 10.1007/BF00271794 · Zbl 0708.76106 · doi:10.1007/BF00271794
[18] DOI: 10.1109/MCS.2004.1272745 · doi:10.1109/MCS.2004.1272745
[19] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[20] DOI: 10.1063/1.4804390 · Zbl 06456397 · doi:10.1063/1.4804390
[21] 44th IEEE Conference on Decision and Control pp 512– (2005)
[22] DOI: 10.1017/S0022112089002247 · doi:10.1017/S0022112089002247
[23] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[24] DOI: 10.1017/S0022112004001855 · Zbl 1065.76121 · doi:10.1017/S0022112004001855
[25] Numerical Recipes: The Art of Scientific Computing (2007) · Zbl 1132.65001
[26] DOI: 10.1007/978-90-481-3723-7 · doi:10.1007/978-90-481-3723-7
[27] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[28] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[29] DOI: 10.1016/j.ijheatfluidflow.2008.03.009 · doi:10.1016/j.ijheatfluidflow.2008.03.009
[30] DOI: 10.1007/s00162-010-0184-8 · Zbl 1272.76103 · doi:10.1007/s00162-010-0184-8
[31] J. Fluid Mech. 228 pp 87– (1991)
[32] DOI: 10.1007/s00162-010-0192-8 · Zbl 1272.76102 · doi:10.1007/s00162-010-0192-8
[33] Optimal Control (1995)
[34] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[35] Linear Systems (1980)
[36] J. Guid. Control Dyn. 3 pp 620– (1985)
[37] DOI: 10.1063/1.2840197 · Zbl 1182.76341 · doi:10.1063/1.2840197
[38] DOI: 10.1017/S0022112003003823 · Zbl 1163.76353 · doi:10.1017/S0022112003003823
[39] DOI: 10.1017/jfm.2012.112 · Zbl 1248.76052 · doi:10.1017/jfm.2012.112
[40] DOI: 10.1063/1.869759 · doi:10.1063/1.869759
[41] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[42] DOI: 10.1007/s001620100043 · Zbl 0999.76047 · doi:10.1007/s001620100043
[43] DOI: 10.1017/S0022112093002575 · Zbl 0800.76296 · doi:10.1017/S0022112093002575
[44] J. Fluid Mech. 588 pp 163– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.