×

Mixing in a vortex breakdown flow. (English) Zbl 1294.76094

Summary: In this paper we present experimental and theoretical results on the mixing inside a cylinder with a rotating lid. The helical flow that is created by the rotation of the disc is well known to exhibit a vortex breakdown bubble over a finite range of Reynolds numbers. The mixing properties of the flow are analysed quantitatively by measuring the exponential decay of the variance as a function of time. This homogenization time is extremely sensitive to the asymmetries of the flow, which are introduced by tilting the rotating or the stationary disc and accurately measured using particle image velocimetry (PIV). In the absence of vortex breakdown, the homogenization time is strongly decreased (by a factor of 10) with only a moderate tilt angle of the rotating lid (of the order of 15\(^{\circ}\)). This phenomenon can be explained by the presence of small radial jets at the periphery which create a strong convective mixing. A simple model of exchange flow between the periphery and the bulk correctly predicts the scaling laws for the homogenization time. In the presence of vortex breakdown, the scalar is trapped inside the vortex breakdown bubble, and thus increases substantially the time needed for homogenization. Curiously, the tilt of the rotating lid has a weak effect on the mixing, but a small tilt of the stationary disc (of the order of \(2^{\circ}\)) strongly decreases (by a factor of 10) the homogenization time. Even more surprising is that the homogenization time diverges when the size of the bubble vanishes. All of these features are recovered by applying the Melnikov theory to calculate the volume of the lobes that exit the bubble. It is the first time that this technique has been applied to a three-dimensional stationary flow with a non-axisymmetric perturbation and compared with experimental results, although it has been applied often to two-dimensional flows with a periodic perturbation.

MSC:

76D17 Viscous vortex flows
76U05 General theory of rotating fluids
76R99 Diffusion and convection
76-05 Experimental work for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] DOI: 10.1063/1.1290277 · Zbl 1184.76556 · doi:10.1063/1.1290277
[2] DOI: 10.1017/S0022112008003789 · Zbl 1155.76055 · doi:10.1017/S0022112008003789
[3] DOI: 10.1137/0516069 · Zbl 0601.70017 · doi:10.1137/0516069
[4] DOI: 10.1063/1.868707 · Zbl 1026.76559 · doi:10.1063/1.868707
[5] DOI: 10.1017/S0022112008005107 · Zbl 1165.76370 · doi:10.1017/S0022112008005107
[6] DOI: 10.1103/PhysRevLett.99.114501 · doi:10.1103/PhysRevLett.99.114501
[7] J. Biomed. Biotechnol. 9 pp 32754– (2007)
[8] DOI: 10.1017/S0022112007005101 · Zbl 1112.76081 · doi:10.1017/S0022112007005101
[9] J. Fluid Mech. 438 pp 363– (2001)
[10] DOI: 10.1017/S0022112003006438 · Zbl 1083.76025 · doi:10.1017/S0022112003006438
[11] DOI: 10.1017/S0022112062001482 · Zbl 0112.40705 · doi:10.1017/S0022112062001482
[12] DOI: 10.1017/S0022112096002492 · Zbl 0875.76442 · doi:10.1017/S0022112096002492
[13] DOI: 10.1017/S0022112004001739 · Zbl 1065.76184 · doi:10.1017/S0022112004001739
[14] DOI: 10.1017/S002211205900009X · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[15] DOI: 10.1017/S0022112005007834 · doi:10.1017/S0022112005007834
[16] DOI: 10.1017/S0022112098002092 · Zbl 0925.76018 · doi:10.1017/S0022112098002092
[17] DOI: 10.1063/1.869083 · Zbl 1027.76662 · doi:10.1063/1.869083
[18] J. Fluid Mech. 281 pp 683– (1998)
[19] J. Fluid Mech. 466 pp 215– (2002)
[20] DOI: 10.1017/S0022112078001159 · doi:10.1017/S0022112078001159
[21] J. Fluid Mech. 444 pp 257– (2001)
[22] DOI: 10.1016/0376-0421(88)90007-3 · doi:10.1016/0376-0421(88)90007-3
[23] DOI: 10.1017/jfm.2011.308 · Zbl 1241.76048 · doi:10.1017/jfm.2011.308
[24] DOI: 10.1017/S0022112071000181 · doi:10.1017/S0022112071000181
[25] DOI: 10.1017/S0022112003004749 · Zbl 1080.76024 · doi:10.1017/S0022112003004749
[26] Annu. Rev. Fluid Mech. 45 pp 59– (2012)
[27] DOI: 10.1017/S0022112090000167 · Zbl 0698.76028 · doi:10.1017/S0022112090000167
[28] DOI: 10.1016/0960-0779(94)90140-6 · Zbl 0823.76034 · doi:10.1016/0960-0779(94)90140-6
[29] DOI: 10.1017/S0022112010003162 · Zbl 1205.76250 · doi:10.1017/S0022112010003162
[30] DOI: 10.1007/s00348-003-0673-2 · doi:10.1007/s00348-003-0673-2
[31] DOI: 10.1017/jfm.2012.93 · Zbl 1248.76071 · doi:10.1017/jfm.2012.93
[32] DOI: 10.2514/3.46798 · doi:10.2514/3.46798
[33] DOI: 10.1017/S0022112092000867 · Zbl 0754.76027 · doi:10.1017/S0022112092000867
[34] DOI: 10.1063/1.3673608 · Zbl 1308.76299 · doi:10.1063/1.3673608
[35] DOI: 10.1017/S0022112006008962 · Zbl 1087.76102 · doi:10.1017/S0022112006008962
[36] DOI: 10.1146/annurev.fl.10.010178.001253 · doi:10.1146/annurev.fl.10.010178.001253
[37] DOI: 10.1103/PhysRevLett.84.471 · doi:10.1103/PhysRevLett.84.471
[38] DOI: 10.1063/1.3560386 · Zbl 06421668 · doi:10.1063/1.3560386
[39] Phys. Fluids 28 pp 393– (1984)
[40] DOI: 10.1145/1089014.1089020 · Zbl 1136.65329 · doi:10.1145/1089014.1089020
[41] Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003)
[42] DOI: 10.1063/1.2033908 · Zbl 1187.76207 · doi:10.1063/1.2033908
[43] DOI: 10.2514/3.44247 · doi:10.2514/3.44247
[44] DOI: 10.1017/S0022112062001470 · Zbl 0112.40706 · doi:10.1017/S0022112062001470
[45] Non-Linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983)
[46] DOI: 10.1146/annurev.fluid.32.1.203 · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[47] DOI: 10.1146/annurev.fl.04.010172.001211 · Zbl 0243.76028 · doi:10.1146/annurev.fl.04.010172.001211
[48] DOI: 10.1017/S0022112097005272 · Zbl 0894.76014 · doi:10.1017/S0022112097005272
[49] DOI: 10.1007/BF00571864 · doi:10.1007/BF00571864
[50] DOI: 10.1002/bit.20960 · doi:10.1002/bit.20960
[51] Swirl Flows (1984)
[52] DOI: 10.1017/S0022112077002420 · Zbl 0369.76021 · doi:10.1017/S0022112077002420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.