×

zbMATH — the first resource for mathematics

Transition delay in a boundary layer flow using active control. (English) Zbl 1294.76093
Summary: Active linear control is applied to delay the onset of laminar-turbulent transition in the boundary layer over a flat plate. The analysis is carried out by numerical simulations of the nonlinear, transitional regime. A three-dimensional, localized initial condition triggering Tollmien-Schlichting waves of finite amplitude is used to numerically simulate the transition to turbulence. Linear quadratic Gaussian controllers based on reduced-order models of the linearized Navier-Stokes equations are designed, where the wall sensors and the actuators are localized in space. A parametric analysis is carried out in the nonlinear regime, for different disturbance amplitudes, by investigating the effects of the actuation on the flow due to different distributions of the localized actuators along the spanwise direction, different sizes of the actuators and the effort of the controllers. We identify the range of parameters where the controllers are effective and highlight the limits of the device for high amplitudes and strong control action. Despite the fully linear control approach, it is shown that the device is effective in delaying the onset of laminar-turbulent transition in the presence of packets characterized by amplitudes \(a\approx\) 1% of the free stream velocity at the actuator location. Up to these amplitudes, it is found that a proper choice of the actuators positively affects the performance of the controller. For a transitional case, \(a\approx\) 0.20%, we show a transition delay of \(\Delta Re_{x} = 3.0\times 10^{5}\).

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D55 Flow control and optimization for incompressible viscous fluids
76F06 Transition to turbulence
Software:
SIMSON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112009991418 · Zbl 1183.76701 · doi:10.1017/S0022112009991418
[2] DOI: 10.1017/jfm.2012.112 · Zbl 1248.76052 · doi:10.1017/jfm.2012.112
[3] DOI: 10.1017/S0022112093001429 · Zbl 0773.76030 · doi:10.1017/S0022112093001429
[4] DOI: 10.1098/rsta.2010.0358 · Zbl 1219.76019 · doi:10.1098/rsta.2010.0358
[5] DOI: 10.1007/s00348-007-0436-6 · doi:10.1007/s00348-007-0436-6
[6] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[7] Control Theory - Multivariable and Nonlinear Methods (2001)
[8] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[9] A Course in Robust Control Theory. A Convex Approach (1999)
[10] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[11] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[12] DOI: 10.1109/9.29422 · Zbl 0698.93034 · doi:10.1109/9.29422
[13] IEEE 37th Conference of Decision Control pp 1906– (1998)
[14] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049 · doi:10.1017/S0022112007005496
[15] (2007)
[16] DOI: 10.1016/S0142-727X(03)00051-1 · doi:10.1016/S0142-727X(03)00051-1
[17] Phys. Fluids 2 pp 1699– (1999)
[18] DOI: 10.1017/jfm.2011.382 · Zbl 1241.76340 · doi:10.1017/jfm.2011.382
[19] Multivariable Feedback Control, Analysis to Design (2005)
[20] DOI: 10.1017/S0022112098001281 · Zbl 0924.76028 · doi:10.1017/S0022112098001281
[21] DOI: 10.1115/1.4001478 · doi:10.1115/1.4001478
[22] DOI: 10.1063/1.4804390 · Zbl 06456397 · doi:10.1063/1.4804390
[23] DOI: 10.1017/S0022112011000620 · Zbl 1241.76167 · doi:10.1017/S0022112011000620
[24] Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[25] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[26] DOI: 10.1016/j.ijheatfluidflow.2004.02.020 · doi:10.1016/j.ijheatfluidflow.2004.02.020
[27] 44th IEEE Conference on Decision and Control pp 512– (2005)
[28] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[29] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[30] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[31] DOI: 10.1016/j.ijheatfluidflow.2008.03.009 · doi:10.1016/j.ijheatfluidflow.2008.03.009
[32] DOI: 10.1017/S0022112009993703 · Zbl 1189.76192 · doi:10.1017/S0022112009993703
[33] DOI: 10.1007/s00162-010-0184-8 · Zbl 1272.76103 · doi:10.1007/s00162-010-0184-8
[34] DOI: 10.1017/S0022112007006490 · Zbl 1118.76011 · doi:10.1017/S0022112007006490
[35] DOI: 10.1017/S0022112005008219 · Zbl 1222.76044 · doi:10.1017/S0022112005008219
[36] Optimal Control (1995)
[37] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[38] DOI: 10.1146/annurev.fl.26.010194.002211 · doi:10.1146/annurev.fl.26.010194.002211
[39] DOI: 10.1017/jfm.2013.194 · Zbl 1287.76095 · doi:10.1017/jfm.2013.194
[40] J. Guid. Control. Dyn. 3 pp 620– (1985)
[41] J. Fluid Mech. 332 pp 157– (1997)
[42] DOI: 10.1063/1.2840197 · Zbl 1182.76341 · doi:10.1063/1.2840197
[43] DOI: 10.1115/1.3077635 · doi:10.1115/1.3077635
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.