×

zbMATH — the first resource for mathematics

Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture. (English) Zbl 1294.11113
Assuming the Birch and Swinnerton-Dyer conjecture (the precise version with the explicit constant), this paper proves an explicit upper bound for the \(x\)-coordinates of \(S\)-integral points on an elliptic curve (Theorem 3.4). The bound is in terms of the discriminant and the degree of the number field. As a consequence, it follows from the Chevalley-Weil theorem that the radical of \(abc\) has to be large when \(a+b=c\). The inequality they obtain is worse than the published results (e.g. [K. Györy, Acta Arith. 133, No. 3, 281–295 (2008; Zbl 1188.11011)]), but this paper brings to light a connection between the BSD and the \(abc\) conjectures.
To prove Theorem 3.4, the authors quote their earlier work [Ramanujan J. 32, No. 1, 125–141 (2013; Zbl 1362.11065)] bounding the \(S\)-integral points in terms of the regulator of the elliptic curve and the Néron-Tate heights of the generators of the Mordell-Weil group. This is where they use the known estimates of linear forms in elliptic logarithms ([S. David, Mém. Soc. Math. Fr., Nouv. Sér. 62, 143 p. (1995; Zbl 0859.11048)]. The second author [“On the Mordell-Weil group and the Tate-Shafarevich group of an abelian variety”, Preprint, arXiv:0801.1054] has previously obtained an upper bound for the regulator in terms of the discriminant assuming BSD, and this in turn bounds the heights of the generators.

MSC:
11G50 Heights
11G05 Elliptic curves over global fields
11J86 Linear forms in logarithms; Baker’s method
14G05 Rational points
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Baker, A, Logarithmic forms and the abc-conjecture, 37-44, (1998), Berlin · Zbl 0973.11047
[2] Belyĭ, GV, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat., 43, 267-276, (1979) · Zbl 0409.12012
[3] Bilu, Y, Quantitative siegel’s theorem for Galois coverings, Compositio Math., 106, 125-158, (1977) · Zbl 1044.11593
[4] Bilu, Y, Baker’s method and modular curves, 73-88, (2002), Cambridge · Zbl 1041.11045
[5] Brumer, A; Kramer, K, The conductor of an abelian variety, CompositioMath., 92, 227-248, (1994) · Zbl 0818.14016
[6] Bosser, V; Surroca, A, Upper bound for the height of S-integral points on elliptic curves, (2012)
[7] Birch, BJ; Swinnerton-Dyer, HPF, notes on elliptic curves. II, J. ReineAngew. Math., 218, 79-108, (1965) · Zbl 0147.02506
[8] Y. Bilu, M. Strambi and A. Surroca. A quantitative Chevalley-Weil theorem for curves. arXiv:0908.1233, (2011). · Zbl 1288.11064
[9] Cassels, JWS, An introduction to the geometry of numbers, (1997), Berlin
[10] G. Cornell and J.H. Silverman, editors. Arithmetic geometry. Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30-August 10, (1984). · Zbl 0596.00007
[11] Coates, J; Wiles, A, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39, 223-251, (1977) · Zbl 0359.14009
[12] David, S, Minorations de formes linéaires de logarithmes elliptiques, (1995) · Zbl 0859.11048
[13] David, S; Hirata-Kohno, N, Linear forms in elliptic logarithms, J. Reine Angew. Math., 628, 37-89, (2009) · Zbl 1169.11034
[14] Elkies, ND, ABC implies Mordell, 99-109, (1991) · Zbl 0763.11016
[15] Gross, BH, On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication, No. 26, 219-236, (1982), Mass.
[16] Goldfeld, D; Szpiro, L, Bounds for the order of the Tate-Shafarevich group, Compositio Math., 97, 71-87, (1995) · Zbl 0860.11032
[17] Györy, K; Yu, K, Bounds for the solutions of S-unit equations and decomposable form equations, Acta Arith., 123, 9-41, (2006) · Zbl 1163.11026
[18] Györy, K, Solving Diophantine equations by baker’s theory, 38-72, (2002), Cambridge · Zbl 1074.11021
[19] Györy, K, On the abc conjecture in algebraic number fields, Acta Arith., 133, 281-295, (2008) · Zbl 1188.11011
[20] Gross, BH; Zagier, DB, Heegner points and derivatives of L-series, Invent. Math., 84, 225-320, (1986) · Zbl 0608.14019
[21] N. Hirata. Minorations de formes linéaires de logarithmes elliptiques p-adiques. Work in progress (2012).
[22] Kolyvagin, VA, Finiteness of E(Q) and SH(E; Q) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., 52, 522-540, (1988)
[23] Lockhart, P; Rosen, M; Silverman, JH, An upper bound for the conductor of an abelian variety, J. Algebraic Geom., 2, 569-601, (1993) · Zbl 0816.14021
[24] Manin, Ju I, Cyclotomic fields and modular curves, Uspehi Mat. Nauk, 26, 7-71, (1971) · Zbl 0241.14014
[25] D.W. Masser. Elliptic functions and transcendence. Springer-Verlag, Berlin, (1975). Lecture Notes in Mathematics, Vol. 437. · Zbl 0312.10023
[26] Masser, DW, Counting points of small height on elliptic curves, Bull. Soc. Math. France, 117, 247-265, (1989) · Zbl 0723.14026
[27] Masser, DW, On abc and discriminants, Proc. Amer. Math. Soc., 130, 3141-3150, (2002) · Zbl 1030.11011
[28] Moret-Bailly, L, Hauteurs et classes de Chern sur LES surfaces arithmétiques, 37-58, (1990), Paris · Zbl 0727.14015
[29] J.-F. Mestre. Formules explicites et minorations de conducteurs de variétés algébriques. Compositio Math., 58(2) (1986), 209-232. · Zbl 0607.14012
[30] Milne, JS, On the arithmetic of abelian varieties, Invent. Math., 17, 177-190, (1972) · Zbl 0249.14012
[31] Oesterlé, J, Nouvelles approches du “théorème” defermat, 161-162, (1989)
[32] Ooe, T; Top, J, On the Mordell-Weil rank of an abelian variety over a number field, J. Pure Appl. Algebra, 58, 261-265, (1989) · Zbl 0686.14025
[33] P. Philippon. Quelques remarques sur des questions d’approximation diophantienne. Bull. Austral. Math. Soc., 59(2) (1999), 323-334. · Zbl 0927.11040
[34] G. Rémond. Intersection de sous-groupes et de sous-variétés. I. Math. Ann., 333(3) (2005), 525-548. · Zbl 1088.11047
[35] G. Rémond. Nombre de points rationnels des courbes. Proc. Lond. Math. Soc., 101(3) (2010), 759-794. · Zbl 1210.11073
[36] Rubin, K, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math., 89, 527-559, (1987) · Zbl 0628.14018
[37] Serre, J-P, Lectures on the Mordell-Weil theorem, (1997), Braunschweig
[38] G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kano Memorial Lectures, 1. · Zbl 0872.11023
[39] G. Shimura and Y. Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo (1961). · Zbl 0112.03502
[40] Stewart, CL; Tijdeman, R, On the oesterlé-masser conjecture, Monatsh. Math., 102, 251-257, (1986) · Zbl 0597.10042
[41] Surroca, A, Siegel’s theorem and the abc conjecture, 323-332, (2004) · Zbl 1166.11336
[42] A. Surroca. Sur l’effectivité du théorème de Siegel et la conjecture abc. J. Number Theory, 124 (2007), 267-290. · Zbl 1125.11021
[43] A. Surroca. On the Mordell-Weil group and the Tate-Shafarevich group of an abelian variety. arXiv:0801.1054, (2012), 22 pages.
[44] Stewart, CL; Yu, K, On the abc conjecture, Math. Ann., 291, 225-230, (1991) · Zbl 0761.11030
[45] Stewart, CL; Yu, K, on the abc conjecture. II, Duke Math. J., 108, 169-181, (2001) · Zbl 1036.11032
[46] Wiles, A, Modular elliptic curves and fermat’s last theorem, Ann. of Math. (2), 141, 443-551, (1995) · Zbl 0823.11029
[47] Yu, K, linear forms in p-adic logarithms. III, Compositio Math., 91, 241-276, (1994) · Zbl 0819.11025
[48] Yu, K, p-adic logarithmic forms and group varieties. II, Acta Arith., 89, 337-378, (1999) · Zbl 0928.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.