×

zbMATH — the first resource for mathematics

Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm. (English) Zbl 1293.74345
Summary: The paper illustrates the application of the particle swarm optimization (PSO) algorithm to the lay-up design of symmetrically laminated composite plates for maximization of fundamental frequency. The design variables are the fiber orientation angles, edge conditions and plate length/width ratios. The formulation is based on the classical laminated plate theory (CLPT), and the method of analysis is the semi-analytical finite strip approach which has been developed on the basis of full energy methods. The performance of the PSO is also compared with the simple genetic algorithm and shows the good efficiency of the PSO algorithm. To check the validity, the obtained results are compared with those available in the literature and some other stacking sequences, wherever possible.

MSC:
74P10 Optimization of other properties in solid mechanics
74K20 Plates
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bert CW (1977) Optimal design of a composite material plate to maximise its fundamental frequency. J Sound Vib 50:229–237 · doi:10.1016/0022-460X(77)90357-1
[2] Bert CW (1978) Design of clamped composite plates to maximise fundamental frequency. J Mech Des 100:274–278 · doi:10.1115/1.3453911
[3] Grenested JL (1989) Lay-up optimization and sensitivity analysis of fundamental eigenfrequency of composite plates. Compos Struct 12(3):193–209 · doi:10.1016/0263-8223(89)90022-6
[4] Chow ST, Liew KM, Lam KY (1992) Transverse vibration of symmetrically laminated rectangular composite plates. Compos Struct 20:213–226 · doi:10.1016/0263-8223(92)90027-A
[5] Fan SC, Cheung YK (1984) Flexural free vibrations of rectangular plates with complex support conditions. J Sound Vib 93:81–94 · doi:10.1016/0022-460X(84)90352-3
[6] Leissa AW, Martin AF (1990) Vibration buckling of rectangular composite plates with variable fibre spacing. Compos Struct 14:339–357 · doi:10.1016/0263-8223(90)90014-6
[7] Qatu MS (1991) Free vibration of laminated composite rectangular plates. Int J Solids Struct 28(8):941–954 · doi:10.1016/0020-7683(91)90122-V
[8] Rao MK, Desai YM (2003) Analytical solutions for vibrations of laminated and sandwich plates using mixed theory. Compos Struct 63:361–373 · doi:10.1016/S0263-8223(03)00185-5
[9] TY Kam, Chang RR (1993) Design of laminated composite plate for maximum buckling load and vibration frequency. Comput Methods Appl Mech Eng 106:65–81 · Zbl 0790.73051 · doi:10.1016/0045-7825(93)90185-Z
[10] Chen J, Dawe DJ (1996) Linear transient analysis of rectangular laminated plates by a finite strip-mode superposition method. Compos Struct 35:213–228 · doi:10.1016/0263-8223(96)00039-6
[11] Chai GB (1994) Free vibration of generally laminated composite plates with various edge support conditions. Compos Struct 29:249–258 · doi:10.1016/0263-8223(94)90022-1
[12] Narita Y (2003) Layerwise optimization for the maximum fundamental frequency of laminated composite plates. J Sound Vib 263:1005–1016 · doi:10.1016/S0022-460X(03)00270-0
[13] Apalak MK, Yildirim M, Ekici R (2008) Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions. Compos Sci Technol 68:537–550 · doi:10.1016/j.compscitech.2007.06.031
[14] Khalil MR, Olson MD, Anderson DL (1988) Non-linear dynamic analysis of stiffened plates. Comput Struct 29:929–941 · Zbl 0667.73052 · doi:10.1016/0045-7949(88)90318-5
[15] Houlston R (1989) Finite strip analysis of plates and stiffened panels subjected to air blast loads. Comput Struct 32:647–659 · Zbl 0705.73228 · doi:10.1016/0045-7949(89)90353-2
[16] Loughlan J (2001) The shear buckling behaviour of thin composite plates with particular reference to the effects of bend-twist coupling. Int J Mech Sci 43:771–792 · Zbl 1071.74577 · doi:10.1016/S0020-7403(00)00030-8
[17] Ovesy HR, Ghannadpour SAM, Morada G (2005) Geometric non-linear analysis of composite laminated plates with initial imperfection under end shortening, using two versions of finite strip method. Compos Struct 71:307–314 · doi:10.1016/j.compstruct.2005.09.030
[18] Assaee H, Ovesy HR (2007) A multi-term semi-energy finite strip method for post-buckling analysis of composite plates. Int J Numer Methods Eng 70:1303–1323 · Zbl 1194.74510 · doi:10.1002/nme.1917
[19] Assaee H (2008) Post-local buckling analysis of composite thin-walled sections using semi-finite strip method. PhD Thesis, Amirkabir University of Technology, Iran
[20] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE int’l conf on neural networks, vol IV. IEEE Service Center, Piscataway, pp 1942–1948
[21] Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan. IEEE Service Center, Piscataway, pp 39–43
[22] Kathiravan R, Ganguli R (2007) Strength design of composite beam using gradient and particle swarm optimization. Compos Struct 81:471–479 · doi:10.1016/j.compstruct.2006.09.007
[23] Nadjah N (2006) Swarm intelligent systems. Springer, Berlin · Zbl 1126.68073
[24] Perera R, Fang SE, Ruiz A (2010) Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modeling errors. Meccanica 45:723–734 · Zbl 1337.74045 · doi:10.1007/s11012-009-9264-5
[25] Vinson JR, Sierakowski RL (1986) The behavior of structures composed of composite materials. Martinus Nijhoff, Dordrecht
[26] Ganguli R, Chopra I (1995) Aeroelastic optimization of a helicopter rotor with composite coupling. J Aircr 32:1326–1334 · doi:10.2514/3.46882
[27] Ganguli R, Chopra I (1996) Aeroelastic optimization of a helicopter rotor with two-cell composite blades. AIAA J 34:835–841 · doi:10.2514/3.13147
[28] Murugan MS, Ganguli R (2005) Aeroelastic stability enhancement and vibration suppression in a composite helicopter rotor. J Aircr 42:1013–1024 · doi:10.2514/1.5652
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.