×

zbMATH — the first resource for mathematics

Subharmonic dynamics of an axially accelerating beam. (English) Zbl 1293.74175
Summary: Geometrically nonlinear dynamics of an axially accelerating beam is investigated numerically in this paper. Employing the Galerkin scheme, the equation of motion is reduced to a set of nonlinear ordinary differential equations with coupled terms. The linear part of this set of equations is then solved to determine the linear natural frequencies. The frequency of the axial acceleration is set to twice the first or second linear natural frequency (subharmonic resonance), and bifurcation diagrams of Poincaré maps are obtained via direct time integration and choosing the amplitude of the speed variations as a bifurcation parameter. The results are presented for four different values of the mean value of the axial speed, specifically in the form of time traces, phase-plane portraits, fast Fourier transforms (FFTs), and Poincaré maps.

MSC:
74H45 Vibrations in dynamical problems in solid mechanics
74H65 Chaotic behavior of solutions to dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wickert J., Mote C.D.J.: Current research on the vibration and stability of moving materials. Shock Vib. Digest. 20, 3–13 (1988) · doi:10.1177/058310248802000503
[2] Chen L.-Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005) · doi:10.1115/1.1849169
[3] Brake M.R., Wickert J.A.: Frictional vibration transmission from a laterally moving surface to a traveling beam. J. Sound Vib. 310, 663–675 (2008) · doi:10.1016/j.jsv.2007.04.029
[4] Kartik V., Wickert J.A.: Vibration and guiding of moving media with edge weave imperfections. J. Sound Vib. 291, 419–436 (2006) · doi:10.1016/j.jsv.2005.06.021
[5] Ponomareva S.V., Van Horssen W.T.: On the transversal vibrations of an axially moving continuum with a time-varying velocity: transient from string to beam behavior. J. Sound Vib. 325, 959–973 (2009) · doi:10.1016/j.jsv.2009.03.038
[6] Suweken G., Van Horssen W.T.: On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity. Non-Linear Dyn. 31, 197–223 (2003) · Zbl 1030.74022 · doi:10.1023/A:1022053131286
[7] Suweken G., Van Horssen W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part II: the beam-like case. J. Sound Vib. 267, 1007–1027 (2003) · Zbl 1030.74022 · doi:10.1016/S0022-460X(03)00219-0
[8] Suweken G., Van Horssen W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part I: the string-like case. J. Sound Vib. 264, 117–133 (2003) · Zbl 1030.74022 · doi:10.1016/S0022-460X(02)01168-9
[9] Van Horssen W.T.: On the influence of lateral vibrations of supports for an axially moving string. J. Sound Vib. 268, 323–330 (2003) · Zbl 1236.74068 · doi:10.1016/S0022-460X(03)00362-6
[10] Van Horssen W.T., Ponomareva S.V.: On the construction of the solution of an equation describing an axially moving string. J. Sound Vib. 287, 359–366 (2005) · Zbl 1243.74029 · doi:10.1016/j.jsv.2005.01.026
[11] Öz H.R., Pakdemirli M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227, 239–257 (1999) · doi:10.1006/jsvi.1999.2247
[12] Öz H.R., Pakdemirli M., BoyacI H.: Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. Int. J. Non-Linear Mech. 36, 107–115 (2001) · Zbl 1342.74077 · doi:10.1016/S0020-7462(99)00090-6
[13] Öz H.R., Pakdemirli M., Özkaya E.: Transition behaviour from string to beam for an axially accelerating material. J. Sound Vib. 215, 571–576 (1998) · doi:10.1006/jsvi.1998.1572
[14] ÖZkaya E., Pakdemirli M.: Vibrations of an axially accelerating beam with small flexural stiffness. J. Sound Vib. 234, 521–535 (2000) · doi:10.1006/jsvi.2000.2890
[15] Pakdemirli M., Öz H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311, 1052–1074 (2008) · doi:10.1016/j.jsv.2007.10.003
[16] Pakdemirli M., Özkaya E.: Approximate boundary layer solution of a moving beam problem. Math. Comput. Appl. 3, 93–100 (1998) · Zbl 0945.74022
[17] Pakdemirli M., Ulsoy A.G.: Stability analysis of an axially accelerating string. J. Sound Vib. 203, 815–832 (1997) · doi:10.1006/jsvi.1996.0935
[18] Pakdemirli M., Ulsoy A.G.: Ceranoglu A. Transverse vibration of an axially accelerating string. J. Sound Vib. 169, 179–196 (1994) · Zbl 0925.73438 · doi:10.1006/jsvi.1994.1012
[19] Marynowski K.: Free vibration analysis of the axially moving Levy-type viscoelastic plate. Eur. J. Mech. A/Solids 29, 879–886 (2010) · doi:10.1016/j.euromechsol.2010.03.010
[20] Marynowski K.: Two-dimensional rheological element in modelling of axially moving viscoelastic web. Eur. J. Mech. A/Solids 25, 729–744 (2006) · Zbl 1099.74017 · doi:10.1016/j.euromechsol.2005.10.005
[21] Marynowski K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solit. Fract. 21, 481–490 (2004) · Zbl 1049.74024 · doi:10.1016/j.chaos.2003.12.020
[22] Marynowski K., Kapitaniak T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-Linear Mech. 42, 118–131 (2007) · Zbl 1200.74076 · doi:10.1016/j.ijnonlinmec.2006.09.006
[23] Marynowski K., Kapitaniak T.: Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web. Int. J. Non-Linear Mech. 37, 1147–1161 (2002) · Zbl 1346.74024 · doi:10.1016/S0020-7462(01)00142-1
[24] Chen L., Zhao W., Ding H.: On Galerkin discretization of axially moving nonlinear strings. Acta Mech. Solida Sinica 22, 369–376 (2009) · doi:10.1016/S0894-9166(09)60286-X
[25] Chen L.H., Zhang W., Yang F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329, 5321–5345 (2010) · doi:10.1016/j.jsv.2010.06.023
[26] Chen L.-Q.: The energetics and the stability of axially moving strings undergoing planar motion. Int. J. Eng. Sci. 44, 1346–1352 (2006) · Zbl 1213.74185 · doi:10.1016/j.ijengsci.2006.08.007
[27] Chen L.-Q., Chen H.: Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model. J. Eng. Math. 67, 205–218 (2010) · Zbl 1193.74052 · doi:10.1007/s10665-009-9316-9
[28] Chen L.-Q., Tang Y.-Q., Lim C.W.: Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams. J. Sound Vib. 329, 547–565 (2010) · doi:10.1016/j.jsv.2009.09.031
[29] Ding H., Chen L.-Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010) · doi:10.1016/j.jsv.2010.03.005
[30] Ding H., Zhang G.C., Chen L.Q.: Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mech. Res. Commun. 38, 52–56 (2011) · Zbl 1272.74377 · doi:10.1016/j.mechrescom.2010.12.003
[31] Huang J.L., Su R.K.L., Li W.H., Chen S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011) · doi:10.1016/j.jsv.2010.04.037
[32] Tang Y.-Q., Chen L.-Q., Yang X.-D.: Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations. J. Sound Vib. 320, 1078–1099 (2009) · doi:10.1016/j.jsv.2008.08.024
[33] Wang B., Chen L.-Q.: Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model. J. Sound Vib. 328, 456–466 (2009) · doi:10.1016/j.jsv.2009.08.016
[34] Ghayesh M.H.: Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech. Mach. Theory 44, 1964–1979 (2009) · Zbl 1178.70026 · doi:10.1016/j.mechmachtheory.2009.05.004
[35] Ghayesh M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010) · doi:10.1016/j.ijnonlinmec.2009.12.011
[36] Ghayesh M.H.: Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide. J. Sound Vib. 314, 757–774 (2008) · doi:10.1016/j.jsv.2008.01.030
[37] Ghayesh M.H.: On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study. Acta Mech. Solida Sinica 24, 373–382 (2011) · doi:10.1016/S0894-9166(11)60038-4
[38] Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. (in press)
[39] Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008) · Zbl 1168.74362 · doi:10.1016/j.ijsolstr.2008.08.002
[40] Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 3, 2850–2859 (2010) · Zbl 1201.74174 · doi:10.1016/j.apm.2009.12.019
[41] Ghayesh M.H., Moradian N.: Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch. Appl. Mech. 81, 781–799 (2011) · Zbl 1271.74152 · doi:10.1007/s00419-010-0446-3
[42] Ghayesh M.H., Païdoussis M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45, 507–524 (2010) · doi:10.1016/j.ijnonlinmec.2010.02.001
[43] Ghayesh M.H., Païdoussis M.P.: Dynamics of a fluid-conveying cantilevered pipe with intermediate spring support. ASME Conference Proceedings 2010, 893–902 (2010)
[44] Ghayesh M.H., Païdoussis M.P., Modarres-Sadeghi Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330, 2869–2899 (2011) · doi:10.1016/j.jsv.2010.12.023
[45] Ghayesh M.H., Yourdkhani M., Balar S., Reid T.: Vibrations and stability of axially traveling laminated beams. Appl. Math. Comput. 217, 545–556 (2010) · Zbl 1426.74150 · doi:10.1016/j.amc.2010.05.088
[46] Sahebkar S.M., Ghazavi M.R., Khadem S.E., Ghayesh M.H.: Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well. Mech. Mach. Theory 46, 743–760 (2011) · Zbl 1385.70042 · doi:10.1016/j.mechmachtheory.2010.12.003
[47] Ghayesh M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53, 1022–1037 (2011) · doi:10.1016/j.ijmecsci.2011.08.010
[48] Ghayesh M.H., Kafiabad H.A., Reid T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49, 227–243 (2012) · doi:10.1016/j.ijsolstr.2011.10.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.